JA \
) |
2

Y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/A \\
.

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

Stress Patterns in an Interplate Shear Zone: An
Effective Anisotropic Model and Implications for the
Transverse Ranges, California

E. R. lvins and G. A. Lyzenga

Phil. Trans. R. Soc. Lond. A 1986 318, 285-347
doi: 10.1098/rsta.1986.0077

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1986 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;318/1542/285&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/318/1542/285.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

JA

/ y

L A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 318, 285-347 (1986) [285]
Printed in Great Britain

STRESS PATTERNS IN AN INTERPLATE SHEAR
ZONE: AN EFFECTIVE ANISOTROPIC MODEL
AND IMPLICATIONS FOR THE TRANSVERSE

RANGES, CALIFORNIA

By E. R. IVINS anp G. A. LYZENGA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, U.S.A.

(Communicated by D. P. McKenzie, F.R.S. — Received 12 October 1984)

CONTENTS

PAGE
1. INTRODUCTION 286
2. TECTONIC SETTING 293
3. VIABILITY OF A TWO-DIMENSIONAL MODEL 296
4. ANISOTROPIC WEAKENING AND TUTORIAL MODELS 297
5. THREE-DIMENSIONAL LAMINATE 297
(a) Bruggeman’s oriented composite 298
(b) Treatment of strike and dip 303
(¢) Non-aligned segment in horizontal shear 303
6. STRESS CHANNELLING 305
7. COLLINEAR CRACKS 306
(a) Doubly periodic array 306
(b) Checkerboard array 310
8. APPLICATION OF THE ANISOTROPIC MODELS TO THE TRANSVERSE RANGEs 312
(a) North-south compression, east-west extension 312
(b) Analysis of exterior stress channelling: elliptical hole in a plate under tension 316
(¢) Other faulting heterogeneities: finite element calculations 316
9. Ricip ROTATION 322
(a) Concentrated twist applied to a rigid inclusion 323
(b) Passive rotation in pure shear 326
(¢) Analytical rotation model and the Transverse Ranges 328
10. Synopsis 328
(a) Result no. 1: crustal tectonic anisotropy 328
(6) Result no. 2: stress channelling around the Transverse Ranges 329

(¢) Result no. 3: rotation in interplate shear 331

Vol. 318. A 1542 19 [Published 4 June 1986

a5
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MIKOIY
Www.jstor.org


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

286 E. R. IVINS AND G. A. LYZENGA
11. CONCLUSIONS 332

APPENDIX A. ANALYTICAL SOLUTION FOR A PLATE WITH EMBEDDED ELLIPTICAL HOLE

OR INCLUSION 334
NoTATION 342
REFERENCES 344

Strong lateral variations in geological structure within a transcurrent interplate
deformation boundary have a substantial influence upon the way in which ambient
stress is related to the relief of regional stress within the boundary zone. Much of the
crustal deformational structure in southern California and environs consists of a
conjugate wrench fault system. The Quaternary fault system consists of a series of
parallel and sub-parallel strike-slip faults that are causally related to the horizontal
interplate shearing. A prominent crustal structural inhomogeneity is the Transverse
Ranges, where fault orientation is east-west, transverse to the dominant north-
westerly trend.

We investigate some of the consequences of this transverse inhomogeneity on the
overall stress and strain field in the southern California region. The activity of the
strike-slip (or wrench) system to the south and north of the Transverse Ranges
suggests a mechanical model consisting of weak zones with a relatively strong degree
of orientation. An effective anisotropy model is constructed based on: (1) a two-
component laminate model consisting of competent unfaulted rock adjacent to
incompetent faulted rock; (2) theoretical results for the weakening of a plate due to
a doubly periodic array of cracks; and (3) finite element treatment of a checkerboard
array of cracks. The fundamental parameter for weakening is A = 1—L, where L is
a non-dimensional form of Biot’s slide modulus. In the limit of 4 — 1 the crust becomes
extremely weak and anisotropic, and as 4 -0 the condition of a strong, isotropic crust
is recovered. The components of the stiffness (or compliance) matrix are directly
related to the mechanical properties of a finite width fault zone, or to the average
fault spacing and asperity density within a particular geological province, or both.
An elastic plate model that incorporates the stress—strain channelling caused by
multiple, oriented fault systems is constructed. The plate is assumed to be stressed
by pure shearing forces maintained at infinity. The ambient field then corresponds
to the north—-south compressional, east—west extensional tectonic régime thatdominates
North-American—Pacific interplate shear along the San Andreas fault, California.
Embedded within the plate is an elliptical inclusion in which multiple fault stress
channelling also occurs. The inclusion thus mimics the misaligned structure of the
Transverse Ranges in southern California. The boundary value problem associated
with the model is treated both analytically and with finite element computations. The
simple model predicts (i) the enhanced seismic energy release associated with the
Transverse Ranges; and (ii) the clockwise rigid rotation indicated by a palaeomagnetic
studies. The relatively simple nature of the model helps to isolate those features of
the southern California tectonic stress régime that might be attributed to the trans-
verse orientation of the Transverse Ranges. Stress channelled into the crosscutting
tectonic structure from the ambient interplate field is significant. Contradirectionality
alone cannot provide an explanation for the enhanced north—south compressive stress
relative to east-west extension.
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The application of dislocation theory to the problem of faulting has profoundly affected our
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understanding of earthquake mechanics. Dislocation models that are based upon prescribed
fault slip have provided valuable information about the changes in stress associated with



http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

OF

=l )
52
=0
=
-9

oU
m<
o(’)
=%
Lod
o=

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANISOTROPIC INTERPLATE SHEAR 287

earthquakes. The models allow us to understand how deformation and stress occur in the
vicinity of a fault surface. More precisely, these models allow us to estimate the geodetic depth:
the length scale over which faults have a strong influence upon the ambient stress-strain field
(Kasahara 1981; Mavko 1981). Chinnery (1963) demonstrated that the geodetic depth is of
the order of the along-strike lateral extent of a finite fault and that most of the stress change
occurs quite close to the fault surfaces. Crack models of faults exhibit precisely these features
and probably have greater versatility in connecting series of earthquake cycles with one another
(Barenblatt et al. 1981).

Recently, the concepts of dislocation and crack mechanics have found application in the
treatment of geological problems associated with the length and time scales of interplate
deformation. Rodgers & Chinnery (1973) have shown that a static elastic model of a bent
dislocation is a reasonable mechanical analogue of the Big Bend feature of the San Andreas
fault in southern California. They demonstrated that the Big Bend probably causes an
enhancement of regional tectonic stress. Bird & Piper (1980) have constructed a dynamic model
treatment of cumulative strain, seismicity and creep along numerous southern California faults.
By attempting to match geodetic constraints with discrete motions along a series of dislocations
(faults) Bird & Piper (1980) concluded that the northwesterly striking strike-slip (or wrench)
system of southern California (see figure 1) acts to significantly weaken the crust over a broad
North American—Pacific interplate zone of shear. In this paper we investigate how this
northwesterly directional weakening interacts with the east-west directional weakening caused
by the Transverse Ranges (see figure 1). To capture the constitutive properties of directional
weakening we employ the theory of anisotropic elasticity. Crustal rock within a fault zone may
actually creep owing to its relatively low frictional resistance to sliding (Byerlee 1978). This
anelastic process is capable of accounting for a large portion of the strain accumulation for time
scales of 100 years or greater. However, elastic models can accurately reveal the spatial
distribution of recoverable strain energy, a property of fundamental importance to the process
of earthquake generation (Tsuboi 1956; Rice 1980). Model properties of the anisotropic theory
are treated at length here. The primary focus of this paper, however, is to use the anisotropic
constitutive theory to investigate how the northwest and east-west directional fault systems
channel strain, stress and recoverable elastic work. An implicit assumption is that such a simple
model may reveal the cumulative effects of the elastic interaction among the two non-aligned
parallel sets of faults over the duration of many great earthquake cycles.

Late Tertiary and Quaternary right lateral displacement along the North-American—Pacific
plate boundary has been largely accommodated by motion along the Hosgri—San Gregorio and
San Andreas faults (Graham & Dickinson 1978). However, overall Neogene (ca. 18 Ma) right
lateral horizontal shearing deformation cannot be explained as a sole result of activity along
these two discontinuities. A seismically active tectonic fabric exists in this region and congists
of a system of parallel and sub-parallel minor fault systems. Chinnery (1966) has shown how
the stress field around a single dislocation gives rise to a secondary strike-slip system when
long-term deformations are large. The clay analogue experiments of Tchalenko (1970) and
Wilcox et al. (1973) suggest that the set of conjugate Riedel shears, known as a wrench fault
system, associated with the same shearing that results in major transform faulting, accounts
for both this additional deformation field and the observed regularity in orientation of this minor
system. Wilcox et al. noted that increasingly large deformation tends to transform the conjugate
system into a parallel braided pattern.

With the use of a compilation of quantitative estimates of the principal stress directions from
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well determined earthquake focal mechanisms, late Cainozoic geological indicators, in situ
estimates and hydro-fracturing experiments, Zoback & Zoback (19804) have shown that the
tectonic stress régime in southern California and environs is one of pure shear. This pure shear
is exactly that which would be predicted on the basis of the directions of relative motions of
North American and Pacific plates in the Minster & Jordan (19778) global tectonic model. This
lithospheric pure shear state is equivalent to north—south compression and east-west extension
acting at a distance. The Transverse Ranges (see map in figure 1) are a longitudinal structure
whose axis runs perpendicular to the north-south compressional axis. The Ranges are
dominated by reverse thrust faults whose strikes are about 90°, running across the structural
fabric of the strike-slip faults (of strikes 30—45°) surrounding it. The seismicity of the Transverse
Ranges has revealed a relatively complicated fault structure, particularly as deduced from
after-shock sequences (Whitcomb et al. 1973 ; Langston 1978; Corbett & Johnson 1982). Fault
surfaces are concave upwards forming an imbricate structure with the deepest portions of very
shallow thrusting angle (Yeats 1981, 1983). Earthquake focal mechanisms within the Ranges
indicate that the north—south compression is enhanced over east-west extension (Yerkes & Lee
1979). It has been suggested that the Quaternary compressional tectonics of the Ranges might
be attributed to the transpression caused by the Big Bend feature of the San Andreas fault
(Yerkes et al. 1981 ; Dickinson 1981). By solving a series of analytical and finite element models
we demonstrate that this ‘ transpressional’ stress state is likely to be enhanced by the transverse
structural trend of the Transverse Ranges.

It is possible to construct a simple model of the stress environment of the Transverse Ranges
that ignores the contribution due to the Big Bend (or of the San Andreas in specific), but which
focuses attention upon the activity of all northwesterly striking faults of southern California
and environs. Activity of the northwesterly striking San Clemente, Elsinore, Newport-Ingle-
wood, San Jacinto, Santa Lucia and Sur-Nacimento systems and those of the Mojave region
(see figure 1) are all envisioned as being zones of weakness and as having structural significance.
The model assumes that a sheared thin elastic plate of infinite lateral extent is weakened by
a spatial distribution of both northwesterly and east-west oriented faults. We approximate the
northwesterly striking faults to pervade everywhere, except in a local longitudinal region that
contains solely east—west striking faults. If the longitudinal region is approximated as elliptical
this physical situation can be posed formally as a mathematical boundary-value problem.
Analytical solutions to the equilibrium equations of incremental elasticity exist that allow the
stress and strain field both within and around this discordant faulting heterogeneity to be fully
treated. Model solutions demonstrate that it is possible to obtain the enhanced compressional
state of the Ranges by the stress channelling that occurs as a result of the geometry of the
ambient tectonic stress field alignment and the bidirectionality of the multiple parallel fault
structure. Depending upon the faulting anisotropy style that we choose for the longitudinal
elliptical structure we may generate any one of a number of deformational fields. The most
striking feature revealed in both finite-element and analytical solutions is that the Ranges act
a concentrator of regional stress. However, only a thrust-dominated anisotropy model generates
an enhanced compressional state.

Hill (1982) has proposed a model that quantitatively relates data pertaining to earthquake
focal mechanisms and overall geological structure in both California and Nevada. Hill’s (1982)
kinematic block model organizes a rather unified picture of how the overall north-south
compressional, east-west extensional stresses which act along the western North American
continent as whole (Zoback & Zoback 19804, b) are related to the current activity of specific
faults in California and its environs.
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The use of regional patterns in geological structure and seismicity to constrain the stress—strain
state assumes that fracture occurs repetitively on time scales of 102-10° years, along pre-existing
planes of weakness. In this paper we shall use the concept that pre-existing fault planes are
zones of weakness and that they accommodate large strains and locally reduce ambient tectonic
stresses.

Both fault directionality and the effective weakening can be accounted for by considering
the crust to be elastically anisotropic. We develop three different approaches to crustal
weakening and anisotropy. The formulations include: (1) a two-component material that forms
a laminate model; (2) a plate crack model in which both mode I and II crack deformation
occurs; and (3) a plate crack model in which only shearing (mode II) along a crack surface
is allowed. Some simple analytical cases demonstrate the pronounced effect that multiple and
oriented faulting can have upon tectonic stress—strain fields when considering the length scales
associated with intraplate boundary shearing.

Sbar (1982) recently computed static elastic stress fields in a sheared plate containing a zone
of material whose isotropic stiffnesses are reduced by a factor of ten. His results elucidate possible
mechanical causes for spatial variation of tectonic stress in the northern Basin and Range
province in western North America. This paper explores ways in which such weakening can
be put on firmer theoretical grounds and then demonstrates that regional heterogeneity in
weakening strongly influences the local crustal stress pattern.

2. TECTONIC SETTING

The southern California region encompasses a zone of transition from the short ridges
connected by long transforms, which are characteristic of the Gulf of California trough, to a
transcurrent transform tectonic style to the north. The transition occurs in the vicinity of the

20 Vol. 318. A
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Imperial fault (see figure 1). The northern Gulf of California is dominated by the long transform
segments. Right lateral strike-slip is the pervasive faulting style of northern Baja California
(Puente & de la Pefia 1979). The primary fault trend there is northwesterly. This trend
continues northward into the Elsinore, San Jacinto and offshore fault systems of southern
California (see maps in figure 1).

TABLE 1. SOURCE LITERATURE FOR REGIONAL SEISMICITY AND TECTONICS

(Selected on the basis of recency, comprehensiveness and bearing upon Quaternary deformation.)

region (see figure 1 maps) reference
Southern Coast Ranges Dibblee (1976); Page (1981); Gawthrop (1978)
Mojave Block Garfunkel (1974); Cummings (1976); Dokka (1983)
Western & Central Transverse Ranges Hadley & Kanamori (1977); Corbett & Johnson (1982); Sylvester
(including Santa Barbara Channel) & Darrow (1979); Yerkes & Lee (1979); Yeats (1983); Langston
1978; Yerkes et al. (1981); Pechmann (1983)
San Jacinto Sylvester & Smith (1976); Ebel & Helmberger (1982); Sharp (1981)
Elsinore Allison et al. (1978); Crowell (1981)

The linear trend associated with the Malibu Coast fault strikes east-west towards the
Mission Creek fault below the Mojave Desert (see both large and inset maps of figure 1) marks
the abrupt southern boundary that separates Transverse Ranges and the northwesterly
trending rightlateral strike-slip system. The Mojave block also contains numerous northwesterly
striking faults (see figure 1). However, this region has relatively low historical seismicity.

The bend of the San Andreas, the left lateral Big Pine and Santa Ynez faults occurs in a
region of transition from the northern extent of the Transverse Ranges to the major transform
style that occurs to the Medicino triple junction. North of the Transverse Ranges the
Sur-Nacimiento, Hosgri-San Gregorio and Santa Lucia Bank fault systems are also active
(Gawthrop 1978). However, historically recorded seismicity indicates that this region releases
at least an order of magnitude less tectonically generated elastic energy in the form of moderate
to large earthquakes (M < 7) relative to their northwesterly striking counterparts to the south
of the Transverse Ranges (Allen et al. 1965). Contemporary deformation rates in the Southern
Coast Ranges are not well documented.

Within the Transverse Ranges faulting trends are primarily east-west. The eastern Transverse
Ranges are separated and slightly offset from the western and central Ranges by the San
Andreas fault. The two east-west trending faults that bound the Pinto Mountains from the
north and the Eagle Mountains from the south (see the San Jacinto fault system inset map
of figure 1) also bound the eastern Transverse Ranges. Later in this paper we shall consider
the mechanical implications of the contrariant direction of faults within the Transverse Ranges
with respect to the overall trend (northwesterly). When the San Andreas can be considered
perfectly locked within the region which separates the eastern from western Transverse Ranges,
then the Transverse Ranges can be considered as unified tectonic block. However, this is
probably not generally true. Consequently, in this paper we shall often, for the sake of brevity,
refer to the western and central Transverse Ranges collectively as the Transverse Ranges, and
distinguish these from the eastern Transverse Ranges.

The mid-Miocene San Gabriel fault of the central Transverse Ranges accommodated
considerable horizontal strain (Crowell 1952). Quaternary activity in the Transverse Ranges
is accompanied by both strike-slip and thrusting deformation (Briggs et al. 1977). Thrusting,
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however, is by far dominant. The western branch of the Santa Ynez fault and the Santa Cruz
Island and Santa Rosa Island faults are among the most notable east-west striking features
(Sylvester et al. 1970). Seismic waveforms from earthquakes in the middle portion of the western
Transverse Ranges reveal that fault planes are apparently contorted and geometrically complex
at depth (0-20 km) (Langston 1978; Yeats 1981). It is not clear how the relative motion of
the North American and Pacific plates is accommodated at depth beneath the Transverse
Ranges. Studies of focal mechanisms of earthquakes south of the Santa Ynez fault indicate the
existence of an imbricate structure of reverse and thrust faults whose dips become nearly
horizontal at depths greater than 15 km (Corbett & Johnson 1982). Detachment of the upper
15-20 km of lithosphere from its base is strongly suggested and would be consistent with
continuous large clockwise rotation of the region since the late Miocene (Luyendyk et al. 1980).
Stauffer (1967) has shown that sediment deposits in the Santa Ynez Mountains in the vicinity
of the Santa Ynez and Big Pine faults are due to an early Tertiary continental shelf. Together
with lithological evidence (Baird ef al. 1974; Yeats et al. 1974; Crouch 1979), this supports the
idea that the Transverse Ranges have undergone significant allochthonous rotational motion
during the Neogene. Hall (19814, b) supports the view that this Neogene rotation was
counter-clockwise. Palacomagnetic evidence (Kamerling & Luyendyk 1979; Luyendyk ef al.
1980) indicates that this motion was clockwise rotational. The large left lateral offset
(10-30 km) inferred along the Santa Ynez fault since early Miocene (Sylvester & Darrow 1979)
is consistent with the notion that there has been significant rotational and translational motion.

 kinematic block
model proposed
by Hill (1982)

a multiple oriented
fault idealization

Fi6urE 2. Three-dimensional view of fault block model proposed by Hill (1982).
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Hill (1982) has proposed a kinematic block model that explains some of the relations between
earthquake focal mechanisms on major faults, overall geological structure and relative plate
motion. In order to test and quantify a block model adequately, Hill (1982) made some useful
simplifying assumptions about the geometry. In figure 2 we have redrawn a portion of Hill’s
geometrical idealization. The underlying theme of the block model is that seismic activity and
periodic plastic straining relieve the build-up of ambient tectonic stress to a degree sufficient
to inhibit incipient failure of block interiors. Hence blocks are truly seen as being rigid.

In figure 2 projections are drawn from the western and eastern ends of the western and central
Transverse Ranges, respectively, to ends of the major axis of an ellipse. The lower portion of
figure 2 represents the geometrical idealization that we use to isolate some relations between
stress—strain pattern and heterogeneity in fault orientation and crustal weakening. Structure
to the south and to the northwest of the Transverse Ranges is similar to that assumed by Hill
(1982). In our idealization the mechanical contribution of the western portion of the left
lateral Garlock fault (G), the Big Pine (BP) fault and the Big Bend of the San Andreas might
be considered as part of the east-west trending fault system.

3. VIABILITY OF A TWO-DIMENSIONAL MODEL

In this paper we shall attempt to draw some analogy between a two-dimensional model with
heterogeneity in fault weakening and orientation with stress and deformation in the region of
the Transverse Ranges in southern California. Certainly no two-dimensional theory is entirely
adequate.

Ergas & Jackson (1981) have demonstrated that southern California and environs displays
rather remarkable lateral homogeneity in crustal P-wave velocity considering the contrast in
both lithology and metamorphic grade. This evidence and the regional Bouguer gravity might
indicate that the Transverse Ranges have no deep roots (Oliver 1980; Walck & Minster 1982;
Aki 1982). However, Humphreys et al. (1984) have shown that the mantle directly beneath
the Transverse Ranges transmits compressional seismic waves nearly 39, faster than its
surroundings. A convergent lithospheric flow that advects cold material into the region might
be implied (Bird & Rosenstock 1984). The viscous stress or the negative buoyancy, or both,
associated with the anomaly may have to be considered in any accurate forward model of stress
in southern California. Density anomalies at depth may act to influence crustal stress patterns
significantly (Fleitout & Froidevaux 1982).

Crustal thickness variations may play an important role in the Neogene (or ca. 10 Ma)
timescale evolution of strain and stress in the interplate zone. Using a series of numerical viscous
flow experiments, England & McKenzie (1982) have shown that the ratio of stress caused by
crustal thickness contrast to stress associated with observed strain rate can be used as a measure
of the relative importance of topography in determining lateral variations in deviatoric stress.
England & McKenzie call this ratio the Argand number, Ar. The values of the maximum shear
stress at 10 km depth are probably between 10 and 100 MPa in the North-American—Pacific
interplate zone (McGarr 1980; Christie & Ord 1980; Lachenbruch & Sass 1980). The
Transverse Ranges are uplifted by 1.5 km, so

Ar~ 1.5 km  pg/(maximum shear stress estimate).

Thus the use of p=28gcm™ and g¢=10ms™? gives: 0.35 < Ar < 3.50. England &
McKenzie’s (1982) calculations with Ar = O(1) for colliding sheets of power-law fluids show
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that crustal thickness contrasts do have some influence upon the deformation field. However,
they are not the dominant source of regional variation in deviatoric stress (as occurs, for
example, when Ar 2 10). Thus for the Transverse Ranges and environs, crustal thickness
variations may effect the overall stress distribution.

An additional source of difficulty in constructing a reliable model of stress variation in the
interplate shear region of southern California is the potentially important influence of spatial
irregularity in upper mantle drag (McGarr 1982; Bird & Baumgardner 1984). The three-
dimensional effects mentioned above (density anomalies, crustal thickness variation and basal
drag) are ignored in the models treated in §§8 and 9. The isolation of the distinct role played
by two-dimensional faulting heterogeneity in an interplate shear therefore appears, but only
at the expense of giving full treatment to stress models of the Transverse Ranges.

4. ANISOTROPIC WEAKENING AND TUTORIAL MODELS

Constitutive equation development appropriate to the weakening induced by active
geological faulting can generally take two courses: either (1) analysis of oriented cracks or joints
(Singh 1973), or (2) mixture theory for oriented media (Walpole 1981). The latter is often
called ‘laminate theory’ (Biot 1965). We shall entertain both courses of analysis. Our
application of constitutive theory for an anisotropic elastic media to unidirectional fault
weakening will reply upon: (1) a multiple component constitutive theory originally developed
by Bruggeman (1937); (2) the model due to Delameter e al. (1975) of a plate that is weakened
by a doubly periodic array of cracks capable of both mode I (compression) and mode II (shear)
deformation; and (3) our finite-element treatment of a checkerboard array of cracks that are
restricted to mode II (shear) deformation.

In §§5, 6 and 7 these anisotropic constitutive models will be introduced. In addition, a series
of extremely simple models will be discussed. These simple models help to clarify how the various
assumptions of the anisotropic theory induce directionality, or channelling, of crustal deformation
and stress. The tutorial models presented in §§5, 6 and 7 are not models of tectonic phenomena
per se. In §§8 and 9 we shall apply the anisotropic constitutive weakening theory to tectonic
models of the Transverse Ranges and demonstrate that the stress channelling induced by fault
orientation has broad implications for the long-term distribution of recoverable elastic work
in the southern California region. Below we introduce the laminate theory, a model that is often
used in the context of seismic wave propagation in a layered media (Backus 1962).

5. THREE-DIMENSIONAL LAMINATE

The static mechanical properties of a periodically active fault site are probably well
characterized by the properties associated with fault gouge and a matrix of cracked, or highly
fractured, rock. The width of typical active faults at depth is unknown. However, it can be
easily shown by using elastic constants typical of cracked laboratory rock samples (see Walsh
& Grosenbaugh 1979) that a composite formed by adjacent layers of cracked and uncracked
rock at depth gives rise to a negligible mechanical weakening and anisotropy of the crust if
fault widths are limited to 2 km. On the other hand, if the weak component of the crust is
characterized by the weakening limits of theoretically derived models of intensely cracked rock
(see Budiansky & O’Connell 1976; Rice et al. 1978), or of stress—strain observations of gouge
in the strain hardening creep range (Morrow et al. 1982), then the composite crust may become
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both weak and very anisotropic. The elastic constants derived for iﬁtensely cracked rock may
be appropriate to the pre-rupture state of a fault.

Finally in this section a simple parameter study of the deformation resulting from the shearing
of a rhomboidal block is undertaken. The mechanical behaviour deviates significantly from
what is predicted on the basis of an isotropic constitutive assumption. The effect of the weak
components of the laminate is to channel stress and strain.

(a) Bruggeman’s oriented composite

The three-dimensional laminate model is a constitutive equation system that describes the
bulk behaviour of a composite mixture. Orientation and periodicity is assumed (see figure 3).
This model does not rely upon variational bounds on composite moduli, as with unoriented
multiple-component media. The exactness with which continuity conditions may be applied
to adjoining components allows for the development of more accurate and reliable constitutive
relations than is typical of mixture laws for unoriented substances (Walpole 1981). The
laminate model given below was first derived by Bruggeman (1937) and has also been treated
by Helbig (1957) and Biot (1965). We therefore only state the results, noting that

a =a/d, b'=0b/d
and dropping the primes below (see figure 3):
b = A0 4P B, (
oo = 3 = (a1 63+ (ab/ B¥) [(2)* +(§2)° = (A0 =A®)2], (
C1a = €13 = [ADA® 4 2(au@AD + pyWA@)]/B* (Le
Co3 = [AVA® +2(aA® + XD (au® + bu™)]/B*, (
(

6o = ap D +bp® = J(cpy—y),

¢s5 = Cog = #OuP [ (ap® +bp ), (1f
where B* = ac® + bef
and ¢V = A0 4250 (D) = 2@ 4 2,@),

In (1), A and g represent the isotropic Lamé constants of the faulted (superscript 1) and
unfaulted (superscript 2) components (see figure 34). The composite stiffnesses are the five
independent constants ¢,;, gy, €195 C23 and ¢gq, and they determine the balance between stress,

7,5 and strain, €¥. The constitutive equation is
Ty1 = €11 61169 €95 FCyp €55, (2a)
Ta = €19 €11 T Cyp €99+ g5 €53, (25)
T3z = €19 €11 Ca3 €55+ g5 €33, (2¢)
Tag = §(Cap—Cag) €3, (24)
T13 = (g6 €13> (2¢)
T12 = Cgg €12 (2f)
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Ficure 3. Three-dimensional, two-component laminate model: (a) coordinates of the laminate; () faulted (1) and
unfaulted (2) phases; (¢) interpretation of moduli E, E,,v and v, in terms of crustal fault orientation; (d)
counter-clockwise rotations from coordinates of transverse isotropy (x, y, z) to attitude of fault plane (y'—2’),
yielding the inverse of the rotation matrix given by Rose (1957) (see equation (4) in text). (E and E,, are the
Young moduli for tension or compression in the plane of isotropy and normal to the plane; respectively;
dip = 90° —y®; strike = ¢°.)

We assume a definition for €% such that
€908 = (0l + 00 ), (3a)
€9 (1 —48%9) =*‘2-(aiuj+ajui), (3b)

where 0% is the Kronecker delta and 0%#¢ is the displacement gradient tensor with 0¢ = 0/0x".
Forms (34) and (36) for €¥ yield a set of five anisotropic constants identical to those of
Lekhnitskii (1981) and Green & Taylor (1939).

Equations (1) assume an x-axis of rotational symmetry as shown in figure 34. Table 2 gives
the corresponding component ensemble of the compliance tensor A% with directional moduli
E, E,,v,v,, G and G,. The inequalities shown in table 2 must be obeyed if the composite moduli
represent a real material since they are conditions for positive definiteness of the strain energy
(Eubanks & Sternberg 1954; Backus 1962).

When the plate shown in figure 3« is aligned with the axes of mechanical symmetry parallel
to (%, y, z) as shown, then the Young moduli, £ and E,, and Poisson ratios, v and v, can be
interpreted with the directionality indicated (also see table 2).

Figure 4 shows the moduli E, E,,, G and the corresponding stiffnesses ¢,;, ¢y,, ¢;, and cgq as


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

300 E. R. IVINS AND G. A. LYZENGA

TABLE 2

anisotropic media

0%, OF, 0%, OF,

Chimn — 22k P51 Cm Wy ijrs T1
Ox; Ox; Ox, Oxg (T1)
P - AijrST,s (T2)
transversely isotropic (x-axis symmetry)
[ ay, ayy a5y 0 0 0
ay, Qg Ay 0 0 0
ijrs a4y Qo asp 0 0 0
AT - ”" 2(ags — ay,) 0 0
- - - — ags 0
| — — - - - Qg
(L o o]
Ey E, Ey
vy 1 v
E, E E 0 o0 (T 3)
oo 1
_ E, 7 E 0 0 0
2(1
o o . (1+vy) 0 0
E, .
- — — — e 0
- 1
B G J

strain energy positive definite

G>0,E>0,E,>0,1—v>2E2/E v >—1

a function of increasing proportion (a/b) of the weak component. The three cases I, IT and
IIT corresponding to the moduli shown in table 3. These cases shown in figure 4 can be split
into two groups depending upon the ratios u™ /u® and K/ K® assumed for the two laminate
components. K and K® are the bulk compressibilities for weak and strong components,
respectively. When p®/u® < 1, but KW/K® a1, then the static mechanical response to
horizontal (x—y) shearing applied to the aligned plate shown in figure 34 is a directional
enhancement, or channelling, of shear strain, €,,, relative to the isotropic case. We refer to this
case as shear, or strike-slip, dominated since the composite plate’s response is qualitatively
similar to strike-slip faulting. This case is characterized by a low value of the composite shear
modulus, G. In figure 44, G drops by almost two orders of magnitude even for (a/b) ~ 0.2.
In the case shown in figure 44 ¢}, remains constant with respect to variations in (a/b) because
we have set AV/A® = 1,

Consider now G, to be the typical rigidity of competent crustal material. It is instructive
to examine (1f) with u® & G, and a/b < p¥/G,. In this case Biot’s (1965) slide modulus,
L=G/G,,is

and hence we may expect that the laminate model must assume that faults are fairly wide at
depth if they effectively weaken the crust. Though fault zones may widen with depth it is
probably safe to assume that

0(107%) < a/b < O(1071).
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ratio of weak to competent rock, a/b

F1GUuRE 4. Values of E, E,, and shear modulus G and the corresponding stiffness as a function of increasing proportion
of weak rock phase. Any value shown to the left of the four vertical x’s at the top and bottom violate the
condition of positive definite strain energy. Cases I, IT and III of table 3 correspond to (), (4) and (c),
respectively.

Hence the weakening range L = 0(107!) occurs in the laminate model when a/b and /G,
are of similar order if the rigidity of the weak component is to be connected to the theoretical
weakening limits of cracked rock. Model calculations by Budiansky & O’Connel (1976) (see
their figure 8 for example) of the weakening caused by partly saturated circular cracks indicate
that 4V /Gy &~ 0.2-0.1 when volumetric crack densities are between 0.5 and 0.75. Such a strong
decrease in effective shear modulus occurs in the strain-hardening creep range when fault gouge
is sheared in the laboratory under confining pressures of 200 MPa. Morrow et al. (1982) have
recently performed laboratory experiments in which the effective shear modulus drops to the
range one tenth to one fiftieth of their low strain elastic values before brittle failure (see their
figure 10 for example). L = O(107?) is therefore not an unreasonable expectation for faults

21 Vol. 318. A
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whose mechanical properties correspond to the strain softening, or pre-rupture, state of a fault. .
No cogent argument can be made that active faults can be characterized in this way for more

than a relatively short span of their temporal histories. Evidence that overall regional tectonic

stress is characterized by the sliding frictional strength of fractured rock (see, for example,

Byerlee 1978; Zoback & Zoback 1980a; Hill 1982) suggests, however, that a characterization

of the static stress field with the theoretical weakening limit L = O(107! to 1072) may be of
some value in predicting stress patterns from observed fault orientation. In a later section we

develop elastic constitutive relations for a model that characterizes the weakening of faults by

a two-dimensional array of cracks.

If the adjacent components in the laminate model are characterized by
w/u® ~ KO/K® < 1, then the mechanical response to applied horizontal shearing will be
characterized by both enhanced shear and compressional straining. We refer to this limit as
compression, or thrust, dominated (see figure 44, ¢). An enhanced compressional strain is
analogous to tectonic straining, or crustal shortening, associated with thrusting or folding. This
limit is useful in simulating the combined effects of local crustal stress—strain channelling and
low-stress—high-strain. The maximum estimates of crustal shortening due to thrusting are
around 1.66:1 (Scheidegger 1956) and consequently involve strains entirely unmodelable
within the confines of linear elastic constitutive assumptions. However, the sense of straining
response is an analogue to thrusting behaviour. Below, a model of strain channelling along
thrusting planes allows us to determine when effective anisotropy may become a significant
feature in crustal deformation.

TABLE 3. SCALE FACTORS AND PARAMETERS OF SEPARATE PHASES FOR LAMINATE MODEL
RESULTS SHOWN IN FIGURE 4

scale
case factor

no. MPa p() p(2) uv u® E® E®@ Ko K®
I 332x10% 0498 0299 1.67x10> 2.25x10* 5.01x10® 5.83x10* 3.35x10* 4.83x10*

II  206x10° 0.380 0.194 1.05x10° 4.3x10* 290x10® 1.0x10° 3.28x10° 6.12x10*
III  4.09x10° 0.280 0.094 2.92x10° 1.31x10° 6.7x10° 2.6x10° 5.09x10® 1.06x10°

Crustal zones where pervasive faulting occurs are probably best characterized by a low
stiffness ¢q4, or shear-dominated, case (figure 44) and not by the compressional case (figure
4b, ¢). Values of the bulk shear modulus ¢g that represent a significantly weakened crust should
enable strong stress and strain channelling to occur along the directions of multiple parallel
fault planes. A weak strike-slip fault corresponds to a region of low shear modulus (or,
equivalently, low ¢4, high ag). Biot (1965) refers to this as a case of low slide modulus L. An
additional non-dimensional parameter will be useful in the discussion. We define a weakening
parameter A such that

A=1-L.

As A0 isotropy is recovered and as A->1 the limit of extreme weakening, anisotropy and
stress—strain channelling is approached.

Often thrust faulting is thought to be associated with compressional forces acting at a
distance. Rundle & Thatcher’s (1980) three-dimensional model of a high-angled dislocation
has clearly demonstrated that this is not always so. A multiple, parallel faulting anisotropy can
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also demonstrate how fault planes actually channel stress—strain from a hotizontal (x—y) shear
stress acting at a distance. The channelling can generate significant z—x and z—y shear straining.
The parallel fault plane attitude of the crustal inhomogeneity shown in figure 54 deviates from
that of the surrounding crust. If x—y shearing were applied to the plate boundary shown in figure
5a, how might we quantify the thrusting response of the crustal heterogeneity in terms of the
reduced composite shear modulus G and weakening parameter?

We approximate the heterogeneity as a rectangular rhomboidal element and then examine
the deformational response of the section due to x—y pure shear. If the forces applied on the
heterogeneity are pure shearing and the displacements at its interface are unrestricted then the
solution of this problem is trivial. The solution simply involves the constitutive equation (see
table 2 and equations (1), (2) and (3)). This problem has been given analytical treatment by
Lekhnitskii (1981, p. 83). The lack of displacement boundary conditions implies that solutions
should be treated as a qualitative description of thrust—fault induced vertical strain and uplift.
The case, however, illustrates the important roles that both geometry and the weakening
parameter A are to play in models of crustal anisotropy.

(b) Treatment of strike and dip

The vertical plane of isotropy of the heterogeneity shown in figure 5 is not perpendicular
to the x—y plane. Consequently, the full stiffness matrix, (with all 36 non-zero elements) C*¥™"
(see table 2) must be considered in the coordinate frame (x,y, z). The relation between
coordinates of the material aelotropy (primed in figure 5) and the coordinates of the applied
(x—y) shear stress is defined by the direction cosines, 0x,/0x; (see table 2). Representation of
the fourth-rank tensor C¥"$ in ah arbitrarily rotated, non-translated frame (thus obtaining
C¥mn) requires operating upon C¥$ with the series of four transformation matrices d%,,/x; (see
first equation in table 2). We can construct the rotation matrix in terms of observed fault
attitude angles, ¢¢ (strike) and ¥© (90°—dip). The consecutive rotations through ¢® and y*®
(see figure 3d) determine the components of the second-rank tensor 0x,/0x;. The components
of the rotation matrix are then identical to the inverse of the matrix given by Rose (1957). Note
that only two rotations are necessary to define the dip and strike. The dyadic matrix form of
the rotation tensor is

cosp® cosy® i —sing® cosy®if sinyeik
0%, /0x; = [ sin @€ f{ cos @¢ ff 0 ] (4)
—cos@®sinye ki sing®siny®h  cosyre kk
The tensor 0xy,/0x;"0x;/0x;" Ok, /Ox,* 0%, /0x, is a lengthy expression, and Lekhnitskii (1981,
p. 42) has given a complete table of the components of this product. Application of this product
on the compliance tensor 4978 yielding A¥'™"* renders all the zero terms in the matrix shown
in table 2 finite.

(¢) Non-aligned segment in horizontal shear

If horizontal (x-y) shearing stress is 7y, then the y—z component of strain far from the
boundary is

€23 = Q46 Tsn (5)
(see Lekhnitskii 1981, p. 85). Implicitly assumed is that €,, is measured in a frame corresponding

to the frame shown by the dotted lines in figure 5a.

21-2
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€y in figure 55, ¢. The contours of vertical displacement are nearly identical to those shown
in figure 54, ¢ for a thin flat heterogeneity. The non-linearity of | ¢,,| against 4 in the range
0.82 < 4 < 0.964 displayed in figure 54, ¢ shows where shear weakening significantly begins
to influence the crust mechanically. There is an interplay of fault attitude and weakening
parameter 4. The three-dimensional diagrams shown in figure 5 demonstrate that the net
deformational channelling with oriented crust will depend upon both strike and dip.

6. STRESS CHANNELLING

The simple three-dimensional results discussed above reveal that when 4 & 0.9 the influence
of the directionality of the multiple fault planes is non-negligible. Let us now examine the case
of a plate of infinite lateral extent that experiences an in-plane stress applied at the origin. The
plate is assumed to be governed by the equations of generalized plane stress.

Figure 6 shows contours of the radial stress distributions for an in-plane stress directed both
along, and orthogonal to, the fault orientation. The results shown in the three cases correspond
to (1) weakening due to cracks (discussed in the next section), (2) moduli from the
strike-slip-dominated laminate of figure 44, and (3) from the compression-dominated laminate
of figure 4¢. The three cases correspond to figure 64, 4 and ¢, respectively. All three cases assume
values of ca. 0.9 for the weakening parameter A.

1.0 (a) T T T (b) T T T (C) T T T

o -

~——— with fault direction
— — isotropic case
-=--~ against fault direction

direction of in-plane stress

02 -0.2 0 02 -02

N . schematic of in-plane forces
direction orthogonal to in-plane stress

Froure 6. Radial stress channelling for three cases of crustal amsotropy Lines show contours of constant values
of 7, (x2+y2)}. The point force in-plane stress is at the origin. The crack model corresponds to the first pair
shown in figure 94 with an asperity density of 65 %, (). Diagram (5) corresponds to the laminate model shown
in figure 42 with ratio a/b = 0.19. Diagram (¢) corresponds to the laminate model with thrust domination (large
contrast between E and E,) in figure 4¢ ratio a/b = 0.19. Note the deepest penetration (¢) occurs for large
contrast in directional Young modulus (i.e. when E,/E is small). Crack model and strike-slip dominated
laminate model similar penetration depths (i.e. compare (a) and (4)). The analytical expression for the radial
stress component, 7., when both the faults and in-plane stress, P, are directed in the y direction is

2
P 3 xxn/[2m(BY = BF) an(x* +y)H),

where X = (= 1) BN e = a) [BBF~1) = C,1/ (B2 +1+C,)

and Co= (Br—1) [1-22%/(*+47)],

and the roots AFf and Af are 3[f,+(ags+2a5)/0,] and ay,/(f¥ay,), respectively, with

Sa ={[(a66+2ax2)/a22] —4ay,/ag}t. For in-plane stress directed normal to faulting direction, the same
expressmn apphes only with compliances that result when operating with the transformation matrix with
¢¢ = (See Green & Taylor (1939).)
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Note the similarity in radial stress penetration depth for strike-slip-dominated and crack
result, relative to the isotropic case. The compression-dominated laminate (figure 6¢) shows
the strongest penetration, or channelling, because the radial stress is a stronger function of the
ratio E/E,, than of other directional moduli ratios.

The similarity between radial stress channelling in crack and laminate models suggests a link
between the constitutive effects. The two models, based upon vastly different assumptions about
the basic physics, are likely to yield similar overall stress and strain reliefs. Let us now examine
the crack model in more detail. In a later section we shall examine further the question of the
similarity in stress patterns among laminate and crack anisotropies.

7. COLLINEAR CRACKS

When the weakening parameter 4 = 0.9 then anisotropy must play a significant role
constitutively. An explicit connection between realistic faulted-rock parameters and a value of
A that is in the weakened range, however, has not yet been given. The three-dimensional
laminate model has served only to demonstrate the importance of the details of multiple
oriented fault plane attitude. In this section we argue that the crust may, in fact, weaken with
A~ 0.9. The plausibility of this weakening is demonstrated by considering the effect of
collinear sets of cracks in static deformation.

The three-dimensional heterogeneity of single faults may occur owing to irregularities in
geometry, stress or mechanical property. The heterogeneity in earthquake rupture as con-
strained by synthetic seismogram modelling indicate that the breaking of relatively small
(diameter ca. 1-10 km) fault asperities may account for a considerable portion of the total
seismic moment (Aki 1979). Whether or not these coseismic anomalies are indicative of
asperities that control the locking of a fault during the interseismic period is unknown. If such
asperities along a fault occur because of geological controls such as local contortion of the fault
surface or because of local differences in basement rock across the fault trace, then these features
also act as barriers to static elastic straining. Furthermore, where superficial features disappear
along a linear fault trace and then reappear several or tens of kilometres further down the trace,
it is probable that little or no brittle deformation occurs in the uppermost portion of the crust
and that the fault is elastically locked within that region. Such areas and seismic gaps (regions
where linear trends in seismicity are abruptly truncated by a so-called locked region) qualify as
effective asperities under the loose definition we now adopt.

(a) Doubly periodic array

In figure 7a an idealized plate is shown that is weakened by a doubly periodic array of cracks.
Here the elastically locked portions of the strike-slip faults correspond to static elastic barriers
(asperities). Since the plate is idealized with the doubly periodic array, interspacing parameters,
B, 0 and crack length, 2a, can be related to the weakening of a crustal plate. We interpret these
as representative of the average locked and unlocked distributions of a particular crustal-tectonic
province characterized by multiple, oriented faults. Unfortunately, we do not have strong
observational controls on &, the distance between neighbouring collinear unlocked segments.
The distance along a locked portion of a fault (6 —2a) may be quite large if those areas are
analogous to seismic gaps. Sanders & Kanamori (1984) suggest 22 km for the Anza seismic
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gap in the San Jacinto fault zone. On the other hand, if the locked portion is similar to asperity
dimensions estimated from seismic sources of earthquakes then the percentage of a fault that
is locked may be quite small (29%,), according to an analysis by Rudnicki & Kanamori (1981).
Hartzell & Brune (1979) suggest a double-asperity source dimension of about 0.5-1.0 km for
an earthquake of moderate magnitude in the San Jacinto fault system. Source models for
earthquakes in the western Transverse Ranges and of other earthquakes in the San Jacinto
fault system suggest similar asperity length scales (see, for example, Wallace ¢t al. (1981) and
Ebel & Helmberger (1982), respectively).

(a) (8)

asperity

F1GURE 7. Geometrical diagram of cracked plate in terms of N strike-slip faults with N, asperities (a) and interspacing
dimensions of doubly periodic crack array from bird’s-eye-view (b). This interspacing corresponds to the model
proposed by Delameter ef al. (1975), which allows both mode I and mode II deformation.

Delameter et al. (1975) analysed the mechanical weakening associated with the doubly
periodic crack array shown in figure 7. Delameter’s model allowed stress field interaction for
both mode I and mode IT deformation (see Bilby & Eshelby 1968, p. 116). The numerically
determined first-order stress-intensity coefficients B! and BI', associated with those deformation
modes (i.e. corresponding to tensional and shearing responses, respectively) are related to the
parameters of a planar orthotropic elastic material (see figure 3¢ and table 2):

E,JE=v,/v=1/(1+2na?Bl/f4), (6a)
A = (21a*BYG,/BOE,) /(1 + 2matBYG, / E,), (65)

where G and E| are the isotropic values of the shear modulus and Young modulus, and «,
B and ¢ are interspacing parameters shown in figure 75. A schematic representation of the
numerically determined values of B! and B!! given by Delameter et al. (1975) as a function
of the interspacing ratios 6/2a and /2« is shown in figure 8. On the basis of these results notice
that when collinear interspacing is close (8/2¢—>1) relative to adjacent collinear line
interspacing (f/2a— 1) then the ratio of the coefficients of stress intensity, BI/ Bl, is roughly
2-4. Weakening due to mode I deformation becomes dominant only when adjacent linear
features become increasingly close together and #/8 < 1. Since adjacent faults are spaced
relatively far from one another, we are interested in the cases where B/6 2 1, and mode II
dominates the weakening.

In figure 9 we have plotted the effect of fault weakening in terms of the stiffnesses €115 Ca2
¢12 and ¢gq and the cross-structure Young modulus E, as a function of decreasing linear asperity
percentage or, in effect, decreasing locked portion. However, in each individual case we
decrease the interspacing ratio 8/2« to affect changes in the collinear asperity percentage. In
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TABLE 4. INTERSPACING PARAMETERS CORRESPONDING TO FIGURE 9

(See equations (7) in text.)

collinear asperity density, y, = 509,

scale at
v, = 1009, 4
case no. N, N é/km £/km a/km (10° MPa) 10* km?®
o 1 110 4 2.0 55.0 05 2.29 4.84
N 2 165 8 1.3 27.5 0.4 2.29 4.84
— 3 5 6 28.3 23.6 7.0 1.34 2.0
< 4 5 12 28.3 11.8 7.0 0.99 2.0
>~ 5 10 6 14.2 23.6 3.5 1.55 2.0
olm 6 13 12 10.3 11.8 2.6 1.55 2.0
= 7 1 4 443.0 55.0 110.8 0.15 4.84
O 8 1 8 295.6 27.5 73.9 0.09 4.84
= 9 2 6 250.0 83.3 62.5 0.84 25.0
o 10 3 12 166.7 41.7 41.7 0.45 25.0
= w

Here H and N are the total lateral dimension and the total number of faults perpendicular
to the strike of the collinear set, respectively. The same parameters subscripted with a ‘c’ are
total linear extent and number of cracks in a single collinear set. 4, is the total areal density
of unrestricted faults and vy, is the asperity percentage per single collinear set. In table 4 we
give a set of values corresponding to a crustal-tectonic province of total areal extent 4. The
values in table 4 correspond to the five pairs of cases shown in figure 9. The paired cases (figure
9a-—e¢, respectively) show the effect of varying the ratio of collinear to parallel number N,/N.
Differences between the parts of figure 9 might seem to indicate that as the ratio N,/ N (number
of locked portions along the strike to lateral number of strike-slip faults) decreases, overall
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weakening would be increased. However, a closer examination of figure 9 reveals that the strong

reduction in ¢z with decreasing asperity percentage is insensitive to a twofold increase in the

number of lateral strike-slip faults, N (see table 4). Hence the number of collinear locked

portions of a fault N, is a more important parameter than total areal density 44. In spite of

the fact that the doubly periodic crack model of Delameter ¢t al. (1975) allows for mode I

deformation, in no case does E}, or ¢;, decrease to less than half. On the other hand, ¢z may
P weaken by as much as a factor of 500 (A = 0.998).

— (b) Checkerboard crack array

;5 >~ Since stress concentrations become more intense as crack tips become closer and closer to
O : one another (§—2a—0), the doubly periodic array shown in figure 7 might yield results
R~ peculiar to its geometrical spacing pattern. To investigate this possibility we now examine the
E o weakening in a checkerboard (staggered) pattern of faults. This pattern is shown in figure 10a.
— 8 In this case only mode II deformation is allowed. The finite-element technique is employed to

determine the constitutive parameters by relating the components of stress with strain. Cracks
here are assumed to be incompressible and perfectly sliding, thus accommodating shearing
motion (mode IT). Details of this technique of fault simulation have been discussed by Melosh
& Raefsky (1981).

Shear weakening dominates this deformation style and is the most appropriate analogy to
crustal faulting that extends to depth. The anisotropic shear weakening was studied as a
function of fault interspacing. The results of this parameter study are shown in figure 105. When
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8. APPLICATION OF THE ANISOTROPY MODELS TO THE TRANSVERSE RANGES

The two examples of deformation and stress that have been employed so far in this paper
(figures 5 and 6) have served as quantitative measures of the physical effects caused by the
faulting anisotropy. In this section we shall be concerned with a physical model that isolates
the mechanical effect of the bidirectionality of parallel faulting in southern California and its
immediate environs. Our approach will take a pedantic course to learn as much as possible
about the causes and implications of each physical effect.

71—\

(a) North—south compression, east—west extension

The east-west v. northwesterly faulting in southern California is demonstrably shown in the
maps of figure 1. The east-west fault trend corresponds to the Transverse Ranges. This
longitudinal anomaly in faulting direction will be approximated as an elliptical anisotropic
inclusion embedded in a thin anisotropic plate of infinite lateral extent. The model will be
treated as a boundary-value problem in incremental elasticity theory of tractional type (see
Gurtin 1972, p. 103). The stress condition applied to the plate is that of pure shear. At an infinite

THE ROYAL A
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distance the y component of normal stress is 75% (north-south) and the x component is 75%

(east-west). Pure shear demands that the deviatoric stresses are

bg — __,bg
Tyy = " Taz

TPE > 0.

This ambient tectonic state is exactly that argued for by Zoback & Zoback (19805) and is
consistent with the overall geodetically recorded deformation pattern (Savage 1978). The
contact between the embedded elliptical heterogeneity is non-dislocational, the interface

maintaining continuity of both displacement and stress. The longitudinal heterogeneity lies with
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its major axis perpendicular to the ambient compressional axis (or equivalently the y-axis).
Below we shall treat only strikes interior to the inclusion that are parallel to its major axis (see
figure 2). The faults trend counter to the northwesterly direction and will act as a mechanical
heterogeneity, a concentrator of stress.

The mathematical treatment of the associated boundary value has been given by Lekhnitskii
(1954) and is given in detail in Appendix A. Comparison of both analytical and finite element
numerical procedures to the published work of Lekhnitskii (1954, 1968, 1981) were crucial to
the development of reliable model solutions. The analytical solutions rely upon defining a stress

function and applying the compatibility conditions for the static planar problem. This yields
a fourth-order partial differential equation of elliptic type (see (A 2) and (A 3) of Appendix
A). The remaining work is then to obtain solutions to the contact problem by using affine
transformations to the complex plane. The conditions of contact in the transform space are given
by (A 34). Ultimately solutions for the stress and strain field interior to the elliptical boundary
are obtained via solutions to (A 39). Rewritten, this equation is

MSint — Sext,

p
s

THE ROYAL
SOCIETY

where the four-vector $'t contains the three unknown (but spatially uniform) stress components
T Tyy> Ty together with the rigid rotation ey of the elliptical inclusion. Incorporation of the
rotation €y is necessitated by the fact that boundary conditions of contact allow for net moments
(Milne-Thomson 1968, p. 21; Lekhnitskii 1968, p. 32). The complex 4 x 4 matrix M and the

complex four-vector S** contain geometrical parameters, exterior and interior compliances
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and boundary stresses, 70%, 7p%. The exterior unknown stress components 7,,,, 7,,, and 7, are
found via a polynomial solution for the stress function of the affine transform space (equation
A 35). The assumed spatial uniformity of the interior stress field is verified ab initio from the
finite element solution to the boundary value problem.

Model results based upon solutions to (A 39) are shown in figure 11. Of chief concern is the
question of how the various models of anisotropy influence stress and strain fields within and
immediately around the elliptical faulting heterogeneity. The values of the parameters plotted
in figure 11 assume an ambient tectonic stress of 3.0 MPa. This value is unimportant, however,
as it is the spatial variations that are of interest. Figure 11 shows spatial contours of stress
intensity, (3J3)} strain intensity, (4/;)}, and cubical dilatation, 4. Both stress and strain intensity
are proportional to the octahedral shear stress and strain, respectively (Freudenthal &
Geiringer 1958, p. 240). The spatial distribution of strain intensity characterizes the distribution
of elastically recoverable work. The definitions employed are

Ty = (e =R+ B +TET, (80
I, = €}, €5, (85)
4 = ef, +6b,, (8¢)

where J; and I are the second invariants of deviatoric stress and strain, €9, and €3, are first
and second principal strains, and 79, and 75,, first and second principal stresses, respectively.
Spatial variation in the cubical dilatation in figure 11 reveals regions of extension (contouring
positive values) and regions of local compression (contouring negative values). The region
absent of contour lines in figure 11 corresponds to the region of the ellipse where stress does
not vary. For these analytical solutions this occurs by assumption. The validity of the
assumption is substantiated by the finite element solutions shown in figure 13. For all cases
shown in figure 11 except frame (¢) the constitutive parameters of interior and exterior faulting
anisotropy are the same when faults are unidirectional (¢¢ = ¢¢). Therefore 11a-d shows the
influence of the transversality of the longitudinal faulting structure with varying exterior strikes
(#°) and constant interior strikes (¢ = 90°). A comparison of figure 11a with figure 115
reveals that the difference between the crack anisotropy that assumes both mode I and II
deformation and that assuming mode II only is, in fact, relatively small.

Strong symmetry about both x and y axes is revealed in figure 11 for all cases with ¢¢ = 45°,
As we discuss later in this paper, 45° orientation is a basic symmetry axis for crack models.
Very different symmetries are found for ¢© # 45°. For ¢¢ # 45° the symmetries fall into two
types: ¢¢ < 45° and ¢° > 45° (see figure 11¢, d). When ¢© = 30° a mirror-image symmetry
occurs about an axis rotated clockwise about 30° (see figure 11¢). On the other hand, if ¢¢ = 55°
(keeping all other parameters the same as those of figure 11a,¢), then this mirror axis of
symmetry rotates to a position where exterior regions at enhanced extension—compression are
about 40° out of phase with those when ¢€ = 30°.

Clearly the inclusion acts as a stress concentration. Note how quickly stress intensity drops
off outside the ellipse, causing contour lines to bunch up. The surrounding faults have the ability
to channel stress (recall figure 6), and their interaction with this elliptical stress concentration
is what is revealed in figure 11. Comparison of the channelling in figure 11¢, d most strikingly
reveals the interaction of fault orientation with the effective elliptical stress concentration. It
will be shown in §9 that the rigid rotation of the elliptical faulting inclusion is supported by
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Fiure 11. Contours of normalized stress intensity (3J3)% (or § times the octahedral shear stress), strain intensity,
(47;)}, and cubical dilatation for an elliptical inclusion of aspect ratio ¢ = 3.0 in pure shear. Elastic mechanical
properties of the inclusion and its surroundings are identical when the mean interior strikes (¢®) and exterior
strikes (¢°) are equal for (a)—(d). In all cases ¢°=90°, 4 =0.9, boundary stresses at infinity are
708 = —708 = 3.0 MPa, 79§ = 0.0; x and y units are tens of kilometres and the reference states for stress intensity
and cubical dilatation are 5.20 MPa and 4.62 x 1075, respectively. Only case (b) allows for both mode I and
IT crack behaviour. For (b) the moduli correspond to the weakening shown in figure 9¢, no. 10, 209, asperity.
Case (a) corresponds to the case shown in figure 13. For (), (¢) and (d) the moduli at ¢® = 0°, 90° are
ExE,=929x10* MPa, v x v, = 0.255, G = 3.7 x 10®* MPa. For case (¢) the inclusion has the properties
of a thrust-dominated laminate whereas the exterior corresponds to mode II cracks. The interior properties
correspond to the proportionalities shown in figure 21 4 (the compliances are increased by 2.47). Mean exterior
strikes ¢€ are as shown and analytical solutions for interior, 75, Ty, Ty, (in megapascals) and reference states
for strain intensity are: (a) 14.98, —4.33, 0.0, 4.78 x 107¢; (5) 11.48, —3.68, —0.02, 3.69 x 107%; (¢) 11.98,
—4.00, 3.12, 4.14x107™*; (d) 13.58, —4.18, —2.32, 4.49x107%; (¢) 12.58, —3.13, 0.0, 3.69x 1074,
respectively.

the antisymmetry in the distribution of compression—extension that surrounds the transverse
heterogeneity.

The case ¢© = 30° most closely corresponds to the orientation of northwesterly strike-slip (or
wrench) faults surrounding the Transverse Ranges. When comparing this naive model (figure
11¢) with reality, two features show a positive correlation: specifically, the model with mode
IT cracks and ¢¢ = 30° predicts extension to the northeast and compression to the northwest
of the Transverse Ranges. Extension is the dominant deformation mode along the eastern extent
of the Garlock fault (Davis 1980; Plescia & Henyey 1982) and compression is a dominant
feature in the Southern Coast Ranges (Dibblee 1976; Gawthrop 1978).

An important negative correlation is revealed in the analytical model results shown in figure
11a-d. Here, note the values for cubical dilatation. Net extension (positive dilatation) is
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predicted when the interior anisotropy is of crack type. This feature is also shown in the positive
large 7/,,, components that result (see also the finite element solution, figure 13). The Transverse
Ranges, on the other hand, experience a rather uniform compression (Hadley & Kanamori
1977; Yeats 1983). Figure 11¢ shows results for ¢¢ = 45°, mode II cracks on the exterior and
a thrust laminate anisotropy on the interior. When the thrust anisotropy is assumed (figure
11¢) then north—south strain accommodation is greatly enhanced, relative to east-west
extension. The result is negative dilatation (compression) as shown at the bottom of figure 11e.
However, even in the thrust laminate case, east—-west extensional stress exceeds north—south
compression by a factor of about 2. This model prediction is contradicted by the relatively strong
north-south compressional state indicated by earthquake focal mechanisms and geological
structure in the western Transverse Ranges (Yerkes & Lee 1979; Yerkes ¢ al. 1981; Hill 1982;
Pechmann 1983). The analytical model results, however, clearly demonstrate that a relatively
large amount of stress is channelled into the contradirectional faulting heterogeneity. The sole
source for this stress is the ambient forces caused by large-scale interplate shear.

Below we shall discuss an analytical model in which the elliptical inclusion is removed.
Lekhnitskii 1954, 1968, 1981) has demonstrated that the tension-compression structure around
relatively weak inclusions, a;

pp = “pp>
Removing the inclusion allows us to isolate readily the channelling influence that is dominated

> a,,, mimics that of the infinitely compliant limit; a;,—>c0.

by the surrounding fault anisotropy.

(b) Analysis of the exterior stress channelling: elliptical hole in a plate under tension

An anisotropic plate with an elliptical cutout is put into tension along the x axis, as shown
in figure 12. The traction tangential to the ellipse boundary is shown by the arrows emanating
from its surface. Arrows pointing outward indicate tension ; those pointing inward, compression.
The tangential edge stress, 7, (see (A 9a) and figure A 1) is plotted as a function of angular
position around the ellipse with the dotted line. The solid line in figure 12 shows the isotropic
solution. Note that the isotropic case is symmetrical about both x and y axes. Here the anisotropy
assumed is the two-dimensional strike-slip dominated type with 4 ~ 0.9. The fault orientation
(shown in the inset in figure 12) destroys the symmetry about x and y axes that the isotropic
case exhibits. For this anisotropy a mirror-image symmetry occurs along a shallow counter-
clockwise rotated axis. Tension appears to be channelled orthogonally to fault strikes, the
maximum values occurring at an angle of about 60° to the right of the y axis, i.e. orthogonal
to fault direction (see figure 12).

(¢) Other faulting inhomogeneities: finite element calculations

Model results shown in figure 11a—¢ together with figure 12 demonstrate the dominant
influence of exterior fault orientation (¢¢) on the stress and strain field around the longitudinal
anomaly in orientation. Aside from the surrounding orientation (¢¢), only the case of thrust
laminate anisotropy seems to have a significant mechanical influence upon the qualitative
picture that emerges from the models shown in figure 11. Even in the thrust-dominated case
(figure 11¢) the channelling in the surrounding medium is qualitatively similar to the other
two cases with ¢¢ = 45° (figure 11a, b). This suggests that heterogeneities present in the
surrounding crustal plate might strongly influence directional stress—strain channelling in all
regions.

The case shown in figure 13 corresponds to the deformation problem posed by applying
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Ficure 12. Tangential edge stress 7, for a plate with hole and northwesterly striking faults; 4 =~ 0.9. Arrows
emanating from the surface of the ellipse indicate the magnitude of tension; those directed toward the surface
indicate compression. Note a shallow-angled axis of mirror symmetry and a minimum in tension magnitude
roughly oriented with the faults. Note the maximum tension oriented orthogonal to fault direction. Parameters
for this case correspond to case I of table 3 and figure 4 where 4 = 0.9. Solid lines outside the ellipse correspond
to the isotropic solution. (See equation (A 22) of Appendix A.)
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north—south compression and east-west extension to the plate shown at the bottom of figure 2
and elaborated upon in figure 11. In figure 13 we plot principal deviatoric stress and strain
axes in and around the elliptical inclusion of weakening type and orientation corresponding
to figure 11a. Notice that the stress orientation is influenced by the ellipse immediately outside
its boundary. The reference ambient stress state is exemplified by the orientation and magnitude
of the axes at the extreme left (west) and right (east) of figure 13. Note that there is a rotation
of stress axes following an arc just outside the boundary of the ellipse from northwest to
southeast. The degree of heterogeneity in stress and strain is relatively large. This is
demonstrated by comparing these principal stresses with those caused by a bent dislocation

p
[\ \

(figure 15), an analogue of transpressional tectonics thought to be a relatively important

i mechanism of regional deformation (Rodgers & Chinnery 1973; Dickinson 1981).

> E The influence of additional spatial heterogeneity upon the pattern shown in figure 13 may
2 (45 be studied by calculating finite element solutions to the planar problem with elliptical inclusion
- G and surrounding faults that correspond to those of figure 11a (¢¢ = 45°, ¢¢ = 90° and all
T O regions containing mode II cracks). The advantage of the finite element method is that it allows
=wu for the incorporation of spatial variation in anisotropic constitutive parameters beyond those

represented by the elliptical heterogeneity.

Several observations suggest that the Sierra Nevada block experiences less deformation than
its surrounding tectonic environment. Christensen (1965) suggests this on the basis of geological
structure throughout this block. Seismic velocity structure suggest that this block is deeply
rooted (Raikes 1980; Aki 1982). Figure 14 shows the solution for principal stress axes when
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Ficure 13. Principal horizontal deviatoric stresses () and strains () for case shown in figure 11 (a). The orientation
is as shown in the inset with ¢® = 45°. Plate is under north—south compression, east-west extension. Arrows
at the end of orthogonal axes pairs indicate stress direction. Note the homogeneity of stress inside the ellipse.
Note also the rotation of principal axes outside the ellipse boundary from north (y & 7, x & 0) to east
(y = 0, x = 22).

the ambient stress system is applied to the configuration discussed above, only with the
mechanical effect of this block included. It is assumed that the Sierra Nevada block represents

<

a region where no faulting occurs (contrast the insets of figures 13 and 14). Quite naturally,
the strong isotropic portion shows enhanced stress levels relative to the case in which the exterior
region is uniformly anisotropic. More interesting is the fact that the values of the largest
(extensional) principal horizontal stresses interior to the ellipse are decreased by as much as
5075 9%, relative to the case shown in figure 13. Also of interest is that a large increase in stress
magnitudes occurs to the south of the elliptical transverse structure. The orientation of the

THE ROYAL
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principal axes of stress to the southwest of this structure is rotated clockwise by about 30° or
more owing to the presence of the strong block on the opposite side of the ellipse. Note that
rotation around the ellipse boundary from north to south is fairly similar in figures 13 and 14.
The strong Sierra Nevada block causes a slight clockwise rotation of stress axes interior to the
ellipse. This degree of rotation is approximately the same as that observed in the principal axes
deduced from focal mechanisms in the western Transverse Ranges (Yerkes & Lee 1979).
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Figure 15 shows the rotation of horizontal principal stress axes caused by a bent dislocation,
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Ficure 14. Principal horizontal stresses for plate with anisotropic inclusion and strong northeasterly section. Plate
stress state aty — + 00 and x — + 00, fault weakening (A) directionality is the same asin figure 13. The unfaulted,
isotropic zone represents the strong Sierra Nevada block (see figure 1); a mechanically competent zone in both
geological (Christensen 1966) and seismic (Raikes 1980) interpretations. Relative to figure 13 note the
enhancement of compressional stress in the north-northeastern and south-southeastern areas just outside the
ellipse boundary. Note the slight clockwise rotation of axes and 50-70 9, decrease in magnitude in the ellipse
interior caused by the presence of the Sierra Nevada block. Note also the 20-40° rotation and greater than
100 %, decrease in east-west extension, north—south compression magnitudes that occur to the west (x < —15)
outside the ellipse when comparing with figure 13.
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Frcure 15. Principal horizontal stresses due to a bent dislocation undergoing mode II deformation. Note that the
rotatation of stress axes along the dislocation are opposite to those occurring along a northwesterly striking
fault that runs to the point (y = 6, x = 0) and then along the ellipse boundary in figure 13.
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an analogue to the Big Bend feature of the San Andreas. Again, the ambient stress state is
represented by axes to the extreme right or left, far from the dislocation.

The rotation of axes near the kink shown in figure 15 is opposite to the sense of rotation found
in the elliptical inclusion model result as one moves from north to south across the
inhomogeneity. The elliptical inclusion and bent dislocation predict qualitatively different
rotations of principal axes in the vicinity of the San Andreas Big Bend (see figure 1 and 2).
Examples of the deviations from the background shear stress axes orientation are shown in
figure 22 where rotations are measured along traverses from position A to B and C to D in
figures 14 and 15.

The spatial variation in magnitude of horizontal principal stresses revealed in the solution
shown in figure 13 is noteworthy. Interior to the ellipse stresses are significantly enhanced,
containing a strong east-west extensional component. This enhanced extension appears both
in the stress and strain, consistent with the positive dilatation of figure 11 4. Although a strong
extensional stress component may have acted during the Pliocene (Hall 19814, b; Yeats 1983),
Quaternary deformation of the western Transverse Ranges is dominated by compressional stress
(Crowell 1976).

As noted above, the strong east-west extensional state diminishes in thrust-dominated
anisotropy interior to the ellipse (figure 11¢). Note that the stress due to a bent dislocation alone
acts to enhance north-south compression within the ellipse if placed in its geometrically
appropriate position; also the influence of the Sierra Nevada block isolated in figure 14 shows
a tendency to reduce this strong east-west extension. Some combination of various stress effects
undoubtably causes the enhancement of north—south compression. Fault frictional effects will
also tend to enhance compression in the region of the Big Bend (Scholz 1977).

In figure 16 we have constructed the same basic physical problem as in figure 13. In this
case an allowance for strong gradients in the stiffness, ¢z4, along the east-west and north—south
directions is modelled. There is a large body of geophysical evidence indicating that the San
Andreas transform system consists of locked and unlocked segments (Agnew & Sieh 1978;
Turcotte & Schubert 1982). Within the southern California region this implies greater strength
north of the Transverse Ranges and some mechanical weakness to the south. This idea is
supported by both the distribution of seismicity (Allen et al. 1965; Briggs ¢t al. 1977) and by
the relatively strong creeping motion along surficial fault expressions within the San Jacinto
fault system (Louie et al. 1985). V

The stiffness ¢gq varies by a factor of 15 from east to west within the ellipse (figure 164) and
by the same factor from north to south outside the ellipse (figure 165). The north-south case
reveals that there is a substantial difference in stress and strain when comparing results with
those when there is no gradient (figure 13). The gradient placed outside the ellipse (figure 165)
has a mild homogenizing effect on the stress orientation both to the south and north of the
ellipse. Stress axes do not rotate about an arc just outside the ellipse boundary as when there
is no gradient (compare stresses in figure 166 and figure 13). The strains also become relatively
homogenized when there is a north-south gradient.

Evidence for strength contrast interior to the ellipse is indicated by the apparent enhancement
of late Quaternary deformation in the Santa Barbara Channel (Yerkes & Lee 1979). A general
large-scale east-west contrast would be consistent with the general rheological differences
between oceanic and continental lithosphere (Froidevaux et al. 1977). Such an east—west
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Ficure 16. Influence of north—south, east-west mechanical contrasts upon principal horizontal stresses and strains.
Fault orientation and north-south compression, east-west extensional state is the same as in figures 13 and
14. The Sierra Nevada block is present. The east-west contrast within the ellipse (@) assumes that
o6 = Cog° [(1—0.064) x/a,+ (14+0.064)]. The north-south contrast outside the ellipse (b) assumes
ces = 6530 [(1—0.064) y/3b, +1(1+0.064)]. (ci° meaning isotropic value). The x and y dependent functions
correspond to a factor of 15 in contrast for cg and cgg, respectively. North—-south and east-west contrasts,
qualitatively, correspond to distribution of moderate magnitude seismicity (see, for example, Allen et al. 1965;
Briggs ¢t al. 1977; Turcotte & Schubert 1982).

lithospheric contrast is strongly suggested by a statistical sampling of plutonic rocks (Baird &
Miesch 1984). East-west variation interior to the ellipse has less influence on the stress or strain
than when there is no gradient (compare figure 16a with figure 13). Apparently contrasts in
the surrounding medium have a much more significant influence upon the static stress and strain
environment than those in the interior (compare figure 164 with figures 14 and 164).
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Ficure 16 (). For legend see p. 321.
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ol 9. R1GID ROTATION

% E It has become a widely accepted view that contiguous crustal tectonic units, or blocks, are
= O capable not only of large translational motion on geological time scales, but also of rather large
E 9) rotations. The primary evidence is palaecomagnetic (Simpson & Cox 1977; Kammerling &

Luyendyk 1979). In this section we shall show that crustal pieces that are identified as regional
faulting heterogeneities can exhibit relatively strong rotations even when the ambient tectonic
stress field is that of pure shear. Seeber (1983) has suggested that the sustenance of such
rotational allochthonus behaviour depends critically upon the activity of an imbricate system
of low-angle thrust faults surrounding the ‘microplate’. We shall show that the underlying
mechanism that drives the rotational motion does not require an imbricate structure. In fact,
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a local stress field sufficient to impart an effective torque on such a tectonic unit is described
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by solutions to the problem of a thin elastic, fault-weakened plate acted upon by pure-shear
horizontal stresses that contains an elliptical inclusion in which faults oriented counter to the
general directional weakening act as an effective heterogeneity. This faulting heterogeneity is
precisely that treated in the previous section and to which figures 11 and 13 refer.

There are, however, some subtleties of the question of rotation that will be more strikingly
revealed by developing a tutorial example in which an externally applied twist drives the
rotation. Later, this exercise will help clarify how rigid rotation takes place in the pure-shear
ambient tectonic stress field.

(a) Concentrated twist applied to a rigid inclusion

In the tutorial example a rigid elliptical inclusion is embedded in a directionally faulted plate,
and a concentrated twisting moment M, , applied to the centre of the inclusion, supplies the
mechanical energy necessary to generate a rigid rotation through angle eg. The solution to
this boundary value problem has been developed by Milne-Thomson (1968) and is discussed
fully in Appendix A. Two geometrical features — the slenderness of the rigid inclusion (a, /by)
and the orientation of surrounding unidirectional strikes of faults (¢€) — together with the planar
orthotropic compliances, a,;, @,,, 4,5, and a4, form the parameter space to be investigated with
this tutorial example. The rigid rotation (in radians) may be written analytically as

€r = (sz/n) Y(dlv Qa5 Q125 A’ ¢e, x5 b*) (9)

The function Yisgiven by (A 30) for the general case in which surrounding faults are non-aligned
with respect to either major or minor axes of the rigid elliptical inclusion. The units of ¥ are
reciprocal newtons and a,, b, are half the lengths of the major and minor axes, respectively.

Particularly germane is the question of what rotational magnitudes can be generated given
the variety of faulting anisotropies presented in §§5 and 7. In other words, the most fundamental
question is: given particular values M,,, a,, by, how do the directional constitutive properties
affect the magnitude of rotation eg? What is discovered by employing the Milne-Thomson
(1968) expression for the rigid rotation (equation (9)) is that compressional and extensional
modes of deformation are the most important mechanical aspects that support strong rotation.
Shear weakening (A4 — 1, or large a4) enhances the extension—compression deformation.

Figure 17 summarizes the influence of the fault weakening and orientation upon the rotation
for values of a,/b, ranging from 2.5 to 10.0 for the concentrated twist case from (9). The
magnitude of the total rotation, eg, clearly increases as fault weakening parameter A4 — 1. This
influence of increased weakening upon the total rotation is shown in figure 18 for a, /b, = 3.75
and M,, = 2.11 x 10" N.

Figure 17a corresponds to weakening where strong compression—tension straining is allowed
within the weak component of the faulted crust (for example figure 45). The strongest influence
of fault orientation upon rigid rotation occurs when there is some contrast in the directional
bulk compressibilities. The contrast is expressed by the percentage of differences between the
compliances a,; and a,,. For a 29, contrast in these compliances the effect of the fault strike,
¢, almost disappears and for a 209, contrast the influence is still fairly weak (see figure 175
and ¢ respectively). In fact, Milne-Thomson’s (1968) analytical expression for Y
(@1, Qg9, 15, A, ¢, ay, by) as summarized in figure 17 reveals a rather remarkable lack of
influence of ¢¢ in all cases. When the surrounding crust is characterized by incompressible
oriented faults, the rotation appears to be entirely independent of the strike of these same faults.
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Ficure 17. Total rigid rotation ey resulting from applied twist as a function of fault strike ¢®: (a) laminate thrusting;
(b) mode II cracks; (¢) mode I and II cracks; (4) laminate strike-slip. For each case the twisting moment is
M,, =2.11x10"¥ N and a, = 280 km. The ellipse aspect ratios correspond to (lines from bottom to top):
Ay/by = 2.5, ay/by =5.0, ay/by, ="1.5, and a,/b, = 10.0. Percentage differences in compliances, i.e.
200 X (ay; —ay,) [ (ay, +as,), values of 4, a,y, a,,, a5 in MPa™ and scaling factors in radians are respectively:
(a) 460%, 0.99, 5.1 x107%, —2.15x1077, 4.4x 1073, 1 unit = 2.99x1077; () 2%, 0.999, 1.29 x 1075,
—2.15x1077, 4.4x107% 1 unit = 1.47x107%; (¢) 209%, 0.999, 1.29x 107>, —2.33x1077, 4.4x107% 1
unit = 1.6 x 107¢; (d) 2809, 0.92, 2.03 x 1074, —1.73 x 1077, 5.66 x 107, 1 unit = 6.59 x 1077,
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This independence of ¢® occurs because of the symmetrical character of the a,; and a,4
compliances (see figure 21) that enable the effects of shear stress 7, upon ¢,,, and ¢,,, to nearly
cancel one another when a,, % a,,.

The independence of rotation upon ¢ allows us to simplify Milne-Thomson’s expression for
Y and obtain an expression for total rotation ey as a function of 4. Consider the fourth-rank
tensor in equation (T2) of table 2, which operates on the fourth-rank compliance tensor 49"$
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with ¢® = 0°in (4) (see §5). As defined throughout, compliances ,,, a,,, @,, and a4 correspond
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Ficure 18. Plot of the analytical dependence of e upon weakening parameter A for mode II cracks in the
concentrated twist case. As A > 1, —In A =& L. In this case a, /b, = 3.7, M,, = 2.11 x 10*® N and q, = 280 km.
At —InA)™! = 1000; a;, = 1.10 X 107%, a5, = 1.08 X 1075, g, = —2.15 X 1077 and g = 4.4 X 1072 MPa™, i.e.
the same compliances as in (b) of figure 17.

to planar orthotropy with faults running parallel to the y-axis. For finite strike ¢° those
compliances most sensitive to compression—extension, a,;, d,,, are

@y, = ay; cost @+ (2a,, + agq) sin® ¢€ cos® P + a,, sin ¢°; (10a)
Ay = ay; SIin® P+ (2a,, + agq) sin® @€ cos? @€+ ay,, cos? ¢ (104)

(see also Lekhnitskii (1981), p. 44).

For shear-mode-dominated anisotropy (in particular for mode II cracks) then a,; =& a,, and
consequently a,; & @,, with maximum compressional weakness occurring at ¢¢ = 45° (see
figure 214). The Young modulus for this maximum weakening Ei,, is

Ey, =1/, = 1/, (11)

By using (10) with ¢© = i and then substituting from (11) into (A 30), allowing 41 (or
equivalently letting the slide modulus L < 1) and finally approximating £, & 3E, L yields an
approximate form for (9):

_3M,, v,

€r — onE. L [1—(1—w,) F%‘l'(”()—l"'l) I'}/[ag by —by(ay— by ~+2ay v,) F%+a*(a*+b*)[’],
0

where I' = 2E, /G, and E,, G, v, are isotropic moduli and Poisson’s ratio. In simplified form
(12) is
e =M, C/L, (13)

where (12) defines the constant C.

The parameter study presented in figure 17 demonstrates the importance of compression—
extension in generating rotation eg. For both laminate anisotropy models ey is approximately
doubled when faults are aligned with the axis of the rigid ellipse (see figure 174, d). For this
type of anisotropy (laminate) significant contrast in directional compliances a,, and a,, occur
(see figure 4 and figure 21¢, d). When compressionally weak faults are aligned with the ellipse
axis, the surrounding material acts as though it were softer than when faults and axis are not
aligned.

The accuracy of (12) compared with the results from the full Milne-Thomson.(1968)

24 Vol. 318. A
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expression (9) when L < 0.1 demonstrates the role that the overall shear weakening plays in
enhancing compression—extension immediately outside the ellipse boundary. Below we discuss
how this same compression—extension enhancement revealed in the applied twist case plays a
critical role in a more geophysically realistic situation.

(b) Passive rotation in pure shear

We now consider the rotational displacement field that occurs along the interface of an
elliptical faulting heterogeneity. The contact with the surrounding unidirectional faulted
crustal plate is non-dislocational and no stress discontinuities occur. The physical situation is
then precisely the same as that discussed in §8, figures 11 and 13. The investigation is limited
to the case where the elliptical heterogeneity is acted upon by a pure shear stress field in which
the axes of compression and extension are aligned with the semimajor and major axes of the
ellipse, respectively. This alignment pursues explanations of the apparently allochthonus
rotational behaviour of the Transverse Ranges (Yeats et al. 1974). However, during much of
the rotation of the Ranges, principal horizontal interplate stress axes have not been aligned
(Hamilton 1978; Crouch 1979; Hall 19814). The model predicts that under the Quaternary

rigid rotation angle, eg
=

|
>

0 45 90 0 45 90
strike, ¢¢/deg

Ficure 19. Rigid rotation (passive rotation in pure shear) of an elliptical faulting heterogeneity as a function of
surrounding parallel fault strike: (a) mode I and II; (4) mode II only. Negative values correspond to
counter-clockwise rotation and vice versa for positive values. Solid and dashed lines correspond to increasing
values of a, /b, as in figure 17. The ratios are a, /b, = 1.75, 2.25, 2.75 and 3.25. Scale factors for rigid rotation
angles are 1 unit = 107 radians in all cases. The directional moduli are the same as mode IT only, and modes
I and IT of figure 114, b, respectively. As discussed in §10 of the text the direction of rigid rotation is positively
correlated with the direction of shear 7,,, within the faulting heterogeneity. Values of the background tectonic
stress and a, are the same as in figure 11.
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alignment of tectonic stress axes with respect to the Transverse Ranges (Zoback & Zoback
19806b), a net clockwise torque acts on the Ranges. This local torque does not depend upon
the activity of an imbricate thrust structure.

In contrast to the case of a concentrated twist applied to a rigid inclusion, a relatively strong
surrounding crust actually enhances the net rotational magnitude, eg. This is not surprising!
The faulting heterogeneity rotates in passive response to the uneven distribution of forces

surrounding it (see figure 20).
y b
&\ f

Ficure 20. Schematic diagram of the differing physics of the two rotation models: (a) concentrated twist with rigid
inclusion; () rotation in pure shear with faulted inclusion. Applied twist () corresponds to results shown in
figures 17 and 18 and to the analytical result embodied in equation (A 30) of Appendix A. Passive rigid rotation
in a pure shear environment (b) corresponds to the results shown in figure 19, which are obtained from the
solution to equation (A 39).

Since it is precisely this anomalous stress field that induces the rigid rotation of the
heterogeneity it now becomes important to consider again figures 11 and 13. Essential to the
generation of finite rigid rotation is the maintenance of a local stress field that is both
heterogeneous and markedly not pure shear. A further requirement is that the local stress field
be asymmetric with respect to the minor axis of the elliptical heterogeneity: only then does
a net torque operate on the heterogeneity. This fact is revealed in figure 19a, b, where a
parameter study with solutions to (A 39) shows that eg = 0 when faults in the surrounding
crust have strikes of ¢¢ = 45°. Note the symmetrical character of stress intensity, strain intensity
and cubical dilatation in figure 114, b and of principal axes shown in figure 13 when ¢¢ = 45°
and the anisotropy is of crack-deformation type. The distribution of stress intensity and cubical
dilatation of figure 11 a belies the fact that no net torques act upon the elliptical inclusion. Note
from the vector S™* defined in (A 40) that interior shear stress 7,, and rotation ep are
simultaneously solved for in system (A 39). When exterior strike angles ¢® pass from values
less than 45° to values greater than 45° the sense of rotation switches from clockwise to
counter-clockwise. A similar sign reversal in the solution for 77, also occurs. The sign of 77,
isalways positively correlated with the sign of eg. The maximum values of eg occur at ¢¢ = 22.5°
and 67.5°. These maxima correspond to maxima for the non-orthotropic generation of normal
shear strain induced by finite a,; and a,4 (see (A 1) and figure 215).

The concentrated twist case has demonstrated the importance of compression—extension
deformation just outside the ellipse boundary. For rotation generated in tectonic shear, the sign
of the cubical dilatation adjacent to the elliptical heterogeneity’s longitudinal sides is
antisymmetric about the y-axis for ¢® # 45° (see figure 11a—¢). When the cubical dilatation
is negative (compression) to the left of the y-axis (¥ < 0) north of the heterogeneity and positive
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to the right (see figure 11¢), then the net torque is clockwise. Crustal material for 0° < ¢¢ < 45°
is compressed in the upper left and lower right hand corners, while extension occurs in the upper
right and lower left hand positions with respect to the heterogeneity (see figure 11¢). For exterior
strikes with 45° < ¢¢ < 90° the opposite antisymmetry occurs (see figure 11d), the interior shear
stress 7, is negative and the net torque is counter-clockwise. This compression—extension
symmetry is precisely that which must occur in the applied twist case (figure 20a). However,
with ambient-shear-induced rigid rotation (figure 205)- the orientation of net torque is left to
be determined by the fault orientation. The stress channelling induced by the parallel faults in
the surrounding crust selects which of the two symmetry types (see figure 11¢, d) will occur.

(¢) Analytical rotation model and the Transverse Ranges

It may now seem tempting to speculate at length concerning the Neogene rotation of the
Transverse Ranges, particularly because there are strongly contrasting views on how to
interpret palacomagnetic and geological evidence (see, for example Hall 19814, ). Clearly,
however, the magnitudes of crustal rotations inferred from palacomagnetic studies (ca. 50-70°;
Kamerling & Luyendyk 1979) imply finite strain. We have not treated the case of finite strain
in this paper. The study here treats a geometry that is probal;ly applicable only to Quaternary
deformation. It is therefore pertinent to address only two questions concerning the rotation of
the Transverse Ranges: (1) Can the Transverse Ranges rotate as a contiguous tectonic unit?
And, if so: (2) What is the predicted Quaternary sense of such a rigid rotation?

The results of the analytical model rather strongly support the notion that the Transverse
Ranges act as contiguous crustal piece capable of rigid rotation even on geodetically measurable
time scales. Since Quaternary faults that surround the Ranges are nearly parallel to the San
Andreas (¢© < 45°) and the sense of rigid rotation predicted by the model is clockwise.

Finally we should return to the suggestion of Seeber (1983) that low-angle imbricate thrust
structures are genetically related to allochthonus rotation. What is demonstrated above is that
imbricate structure is not a necessary condition for rotation. None the less, an imbricate thrust
structure is a pervasive feature of the western Transverse Ranges (Yeats 1981, 1983). Studies
of aftershock sequences are the most conclusive observational evidence (Langston 1978 ; Corbett
& Johnson 1982). The genetic relation of imbricate thrust structure to rotation probably occurs
as it is necessitated by vertical variation of horizontal, large finite strains.

10. Sy~Nopsis

Model features that should not be left subtle are highlighted in this section. Results fall into
three categories: (1) anisotropic models for an oriented, multiply faulted crust, (2) delineation
of the anisotropic stress—strain channelling that occurs around a longitudinal faulting anomaly
(analogue of the Transverse Ranges), and (3) explanation of how the longitudinal anomaly
rotates rigidly in non-dislocational contact with the surrounding faulted plate, which experiences
an ambient tectonic stress field analogous to North—American—Pacific interplate shear.

(@) Result no. 1: crustal tectonic anisotropy

First, we have shown how a laminated medium consisting of strong and weak components
reduces the effective elastic moduli of a fault weakened crust (see figures 3 and 4 and table
3). Also considered has been the weakening induced by oriented faults which are modelled as
a doubly periodic array of cracks (see figures 8, 9 and 10 and table 4). The three-dimensional
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laminate model is one of transverse isotropy with x-axis symmetry (see equation (2) and table
2). When the laminate model is employed with faults dipping vertically, the linear elastic
constitutive equation corresponds to one of an orthotropic planar system. Crack array models
also exhibit orthotropic symmetry. The angular dependence of the compliances
(@y15 G19, Ggg, Grg> Ggg) 1s summarized in figure 21 for both two-dimensional laminate and crack
models. The most significant difference between laminate and crack models occurs at angles
of 45°. For the crack model g4, shows almost an order of magnitude decrease at 45°, whereas
in the laminate model the reduction is only to between one third and one half. Resistance to
shear straining is maximum at 45°, except in the compression dominated laminate (figure 194).

Caution must be exercised in properly applying the equations (1) for a two-component
laminate model because the condition of positive definiteness of the strain energy function may
be violated (see figure 45). The laminate anisotropy model has distinct advantages over crack
models if exaggerated extension—compression is a desired model feature. However, unlike
laminate models, crack models do not require a relatively large volumetric fraction of the crust
to behave as an isotropically weak material (see figure 4). On the basis of figure 21 we deduce
that for an arbitrarily oriented crust with parallel shearing cracks (strike-slip faults) the
appropriate anisotropy corresponds to the elastic constants of a material with two-dimensional
tetragonal-disphenoidal symmetry (see Gurtin 1972, p. 88). This symmetry simplifies analytical
treatment because the cross-compliances have antisymmetry (@, = —da,,) and compressional
compliances are equal (a,, = a,,). We have shown how the effective fault-weakened anisotropy
models work in some simple deformation boundary value problems. Consideration of in-plane
stress (see figure 6) and the vertical strain of a non-aligned three-dimensional heterogeneity
due to pure two-dimensional shearing (see figure 5) clearly demonstrates that stress—strain
channelling is substantial when the weakening parameter 4 > 0.9 (or, equivalently, when
Biot’s (1965) slide modulus L < 0.1).

(b) Result no. 2: stress channelling around the Transverse Ranges

The main impetus of this paper has been to demonstrate that oriented fault weakening in
the brittle elastic crust has a strong influence upon the way in which stress and strain occur
locally within an interplate shearing zone such as that in the southern California region. Toward
this goal the analytical solutions shown in figures 11 and 12 and the finite-element solutions
shown in figures 13, 14 and 16 are our primary result. A fundamental feature of the elliptical
inclusion model of the Transverse Ranges appears: the discordant geometrical orientation that
the faults within the Ranges represent has a substantial tendency to concentrate regional stress
(see figures 11 and 13). However, the anisotropic elliptical inclusion model with ambient pure
shear fails to explain the apparent relative magnitudes of horizontal stresses determined from
the orientation of fold axes and earthquake focal mechanisms (Yerkes & Lee 1979; Yerkes
etal. 1981; Hill 1982). Matching the observed enhancement of the north—south principal stress
requires the imposition of other strength contrasts or stress fields, or both. In this regard, the
relative strength of the Sierra Nevada block may be of significance (see figure 14) as may the
stress caused by transpression along the Big Bend of the San Andreas (see figure 15). A strong
north-south gradient in fault weakening is also significant to the overall stress distribution (see
figure 164). Strength contrasts within the elliptical heterogeneity have comparatively little
effect (see figure 164).

In that the elliptical heterogeneity in figures 11, 13, 14 and 16 mimics the mechanics of the
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Ficurk 21. Relative value of the compliances as ¢® is varied from 0° (abscissa) to 90° (ordinate). Unit value is the
maximum for the projection. a,, is the mirror image of a,, for each case. '+’ and ‘ —’ on a,4 and a,4 plots
represent positive and negative regions respectively. Cases (a) and (4) have compliances a,, = 1.16 X 1072,
Ay =—2.78x107%, g5 = 2.3 x 107* and q,, = 1.85 % 107? for (a), and a;;, = 1.16 x 107> MPa™ for (4). Case
(¢) corresponds to the laminate model of figure 44 with a/b = 0.19 and the compliances with the fault direction
are a;; = 2.03 x 107%, gy, = 6.08 X 1075, a,, = —1.73 x 1077, g = 5.66 x 107 MPa™. Case (d) corresponds to
case 111, figure 4¢, (laminate, thrust dominated) with a/b = 0.19 and the compliances with the fault direction
area;; = 4.70 x 1075, a5, = 2.40 X 1075, 2, = —9.33 x 1077 and a4 = 6.10 x 107> MPa™. At ¢¢ = 15°, ;4 and
a4 are: (a) 3.67x 1075, —4.01x107%; (b) 3.99x 1075, —3.99x107%; (c) 2.98x 1075, —1.01 x107*; (d)
2.98 x107%, —1.01 x 10™* MPa™%, respectively.
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Ficure 22. Variation of stress axis direction following paths from A to B and C to D in figure 14 and A to B in
figure 15. The path across the bent dislocation traverses the area of maximum rotation. Similar paths across
other regions of the elliptical inclusion plots shown in figures 13, 14 or 16 will show this type of strong variation.
Curves are approximate, accurate to within about +4°.

static stress—strain field of the Transverse Ranges in southern California, these results have some
implications for interpretations of geodetic or stress field data (or both) in the region. The
elliptical faulting heterogeneity causes considerably greater and more widespread perturbation
of the stress field than that due to a bent dislocation alone. A comparison of the amount of
rotation of the principal axes of stress as one follows a line connecting positions A and B in
figures 14 and 15 is shown in figure 22. Since the model is entirely elastic and because we can
neither constrain the regional variation of the fault-weakening parameter, 4, nor constrain the
geometry of the Transverse Ranges precisely to an ellipse, a direct comparison of figures 13,
14 and 16 with reductions of geodetic data from within the region (see, for example, Savage
1978) is tenuous. Interestingly, however, all solutions for stress—strain fields within the faulting
heterogeneity (i.e. the elliptical inclusion) show a remarkable homogeneity in both orientation
and magnitude of principal axes (see figures 13, 14 and 16). This homogeneity is observed in
the overall deformation that occurs in the Transverse Ranges (Yerkes & Lee 1979).

(¢) Result no. 3: rotation in interplate shear

Using an expression derived analytically by Milne-Thomson (1968) (see equation (A 30) of
Appendix A) we are able to show the influence of both the fault-weakening parameter, 4, and
orientation of the primary faulting trend of the surrounding elastic crust, ¢®, on the total rigid
rotation when a twist is applied to an inclusion (see figure 20a). These results are summarized
in figures 17 and 18. Plots of the Milne-Thomson (1968) solution for the case of mode IT cracks
(figure 17 ) reveals that ¢ has a negligible influence. For the case of laminate thrust anisotropy
the magnitude of rotation increases when the major axis of the ellipse is parallel to the fault
direction (see the hump in figure 17a). Compressional and extensional modes of deformation
enhance rotation. For a very weak crust of oriented mode II cracks (strike-slip faults) a
simplified form of the Milne-Thomson (1968) expression reveals that the magnitude of rigid
rotation increases linearly with the inverse of Biot’s (1965) slide modulus L. This proportionality
helps clarify how shear-mode weakening (strike-slip) accommodates large compression—


http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

p
s

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A
SOCIETY /\

A

—
>~
o[—<
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

332 E. R. IVINS AND G. A. LYZENGA

extension deformation necessary for rotation. The case of applied twist is tutorial since an ad
hoc torque is required.

However, a net torque acts upon an elliptical, transversely oriented, faulting heterogeneity
which is embedded in a faulted plate subjected to shear at a distance (see figure 204). The
net torque arises from natural circumstances. It can be explained by the mirror-image
symmetry in compression—extension that surrounds the heterogeneity (see figure 11¢, d). The
torque causes clockwise rotation for surrounding faults with parallel strikes, ¢¢, less than 45°,
and counter-clockwise for strikes greater than 45° (see figure 19). Palacomagnetic evidence
favours late Cainozoic deformation in which the Transverse Ranges experience a net clockwise
rigid rotation (Luyendyk et al. 1980). Though such evidence is not incontrovertible, it is
consistent with the ongoing sense of rigid rotation predicted by our analytical model because
Quaternary strike orientation is roughly bounded by 30° < ¢ < 45° (see figures 1 and 19).

11. CONCLUSIONS

Chinnery (1964) was one of the first to argue that the elastic shear modulus of the brittle
elastic crust is effectively reduced by an order of magnitude in zones of active tectonism. His
assertionsrested upon calculations of the stress fields induced by static dislocations. Self-consistent
global lithospheric stress fields computed by Richardson et al. (1979) by using a linear elastic
constitutive assumption rely upon assuming that major transform faults, mid-oceanic rifts and
other weak zones are characterized by a rigidity that is decreased by an order of magnitude
over those measured seismically. Anisotropy models capture many of the essential ingredients
of both the weakening and directionality associated with faulting.

The pervasive Quaternary strike-slip (or wrench) structure that occurs in southern California
has been analysed in this paper by solving a series of planar, linear elastic boundary value
problems of tractional type that assume pure shear forces at infinity. The northwesterly strike-slip
faulting has been approximated as a constitutive anisotropic weakening. When this northwest-
striking pattern is broken by a longitudinal transversely (east-west) oriented crustal piece the
problem becomes a complicated one. The complexity occurs because the two regionally distinct
fault sets channel the ambient tectonic stress in differing directions. By approximating the
transversely oriented piece as having an elliptical boundary we can apply the analytical
treatment of Lekhnitskii (1954). The combination of both analytical and finite element
solutions allow us to come to two fairly robust conclusions:

1. The cross-cutting tectonic fabric of the Transverse Ranges in southern California cause
the Ranges to act as a stress concentrator.

2. Rigid rotation of the Transverse Ranges is mechanically supported by an asymmetric
distribution of stress and elastic strain encircling it. For Quaternary tectonic orientation a
clockwise sense to this rotation is predicted.

Regarding the concentration of stress, we should clarify that this is entirely consistent with
the notion that bends, or kinks, in strike-slip structures give rise to zones where stresses build
up periodically, and energy stored elastically is released in the form of large earthquakes (Koide
& Bhattacharji 1977). Our analytical and finite element models are one approach to
quantifying the question of regional variation in stored elastic energy and stress. The Sierra
Nevada batholith may also act as a significant heterogeneity. Spatial and temporal variation
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of seismicity and deformation along Quaternary faults of southern and northern California
(Raleigh et al. 1982; Sharp 1982) probably implies that the effective system of faulting
heterogeneity is also spatio-temporal in character. However, over both the span of the
Quaternary and of recorded seismic history the Transverse Ranges comprise an important
tectonic feature with anomalous deformational style and sense (Allen et al. 1965; Briggs et al.
1977; Yerkes & Lee 1979; Yerkes e al. 1981).

The homogeneity of stress within the Transverse Ranges is predicted by our models. This
homogeneity is consistent with the notion that the Transverse Ranges act as a contiguous
tectonic unit. Palinspastic reconstructions and palaeomagnetic evidence indicate that this unit
is capable of sustaining significant tectonic rotation. We have divided southern California into
two spatially distinct fault sets. This idealized division has allowed us to examine what influence
the northwesterly striking faults have upon the second (east-west) fault set and vice versa. The
homogeneity of stress within the second set (east-west) occurs because of encirclement by the
northwesterly striking set. A substantial net torque acts upon the crust containing the second
set of faults. Our model predicts an asymmetric distribution of channelled tectonic stress with
respect to the longitudinal axis of the east-west fault set. This asymmetric distribution provides
the necessary mechanical energy to generate the torque. Detachment faults and an imbricate
structure are probably associated with the allochthonous motion of the Transverse Ranges
(Yeats 1981). However, the calculations presented in this paper demonstrate that the physical
circumstances that lead to the generation of tectonic rotation need not require an imbricate
structure. If the tectonic rotation of the Transverse Ranges is a real component of Quaternary
deformation then it should be observable geodetically. It is possible that space geodetic
strategies will be capable of discriminating such evidence in the future (Musman 1982;
Lyzenga et al. 1986).

Our study is similar to that of Zoback & Zoback (19804a), Hill (1982) and of Bird &
Baumgardner (1984) in one aspect: that fault orientation is an essential geometrical feature
that must be accounted for if consistent relations between overall tectonic stress and interaction
among adjacent tectonic units are to be explained. There is also a fundamental difference. We
have derived stress—strain fields on the basis of solutions of the compatibility equations of
elasticity without explicitly accounting for stress-limiting plastic yield surfaces in terms of fault
friction. The major discovery retrieved from the analytical and finite element treatments is that
both the torque-sustaining allochthonous rotation and the accumulation of excess recoverable
strain energy within the Transverse Ranges can be attributed to the contradirectional fault
orientation.
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support and encouragement. The finite element calculations could not have been carried out
without the expert assistance and guidance of Arthur Raefsky. The authors wish to thank
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APPENDIX A. ANALYTICAL SOLUTION FOR A PLATE WITH ELLIPTICAL
HOLE OR INCLUSION

In this appendix we outline the Kolosov—Muskhelishvili method for obtaining the analytical
solutions for cases of an elliptical inclusion or cutout in a non-orthotropic plate under plane
stress. Here we also write down the solutions plotted in figures 11a—e, 12, 17, 18 and 19 in
analytical form. Our outline attempts to be as complete as possible. However, it is recommended
to the reader who wishes to rederive solutions fully that they refer to the monographs by
Lekhnitskii (1968) and Milne-Thomson (1968).

The stress—strain equations for planar non-orthotropic elasticity are:

€rz = Q11 Tap 1y Tyy t 816 Tays
Eyy = Q1 Tygp T Ao Tyt 86Ty (A1)
€py = Q16 Typ T 0o Tyy + ge Tyys

where the finite compliances a,4 and 4,4 are due to the non-alignment of faults with the x or
y coordinate axes (see table 2). Here we shall assume that coordinates x and y coincide with
major and minor axes of the ellipse (see figure 12) and that the origin is at its centre. The
stress function F is defined by

Tox = ayy F, 1,,= 0z F, Toy = Oy F (A 2)

where subscripts on 0 indicate partial differentiation with respect to independent variables x
and y respectively. Application of the compatibility equation for the stresses to (A 1) and (A 2)
casts the mathematical boundary-value problem as

FF =0, (A 3a)
where the partial differential operator is
4
2= 11 ©,~md) (A 30)

and u,, are the four complex roots of the characteristic equation
ayy pt =2y ° + (2015 + agg) p* — 2096 1+ ayy = 0. (A30)

In (A 35) II indicates the sum-product. Of the four roots g, there exists a complex conjugate
pair such that u, = o), +if, and u;, = a—if, fork = 1, 2 and k = 3, 4, respectively. The roots
of the characteristic equation (A 3) suggest the separation of (A 34) via the affine transformation
to the complex variables:
2 = 2+ iy, (A4)
Since the roots p, form a conjugate pair, we need only to consider £ = 1, 2. For plane
problems with no body forces present and u, # p, the boundary value problem (A 3a) may
be recast by using complex independent variables (A 4) to form the four analytical functions
D, (z;,) = dF,/dz,, Py(z) = dP,/dz; such that

F=2Re[F(z,) +F(z,)], ‘ (A 5a)

2
Tar =2Re T pi B} (21), (A 50)
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2 ’
T,y = 2 Re k§=]1 D (z), (A 5¢)
2
Ty =—2Re X By (zy), (A5d)
2
u=2 RC E pk ¢k(zk), (A 53)
k=1
2
v=2Re kz 9 Pr(2g)- (A5f)
=1

In equations (A 5) we assume that background stresses, rigid rotations, and pure translations

are absent. In (A 5¢, f) 9
Pr =y Mgt Qa6 s (A 6a)

Qi = Qya g+ Qoo / g — Ggg- (A 6b)

Edge stresses along an elliptical cutout with tension at angle ¢ applied at infinity

Boundary tractions of components 7, -, £, *j are considered with respect to outward normal
#i. In an elliptical cutout, or hole, then 7 is towards its centre (see figure A 1). If the coordinates
x, y emanate from the centre of the elliptical hole, the normal 7 is

i = gng i+gﬁyj (ATa)
and the tangent { is . X
t= g i+ 8y (AT7b)

where g , and g, are direction cosines of tangent and normal vectors. For the boundary of
an elliptical hole with x and y positive,

Sty = &nz. = — b* Cos 0/l> (A 8a)
8tz = —&ny = ax sinb/l, (A 8b)

where a, and b, are the half-lengths of the major and minor axes respectively. Here 6 is
measured counter-clockwise from the positive x-axis and

| = (a% sin? 0+ b% cos? 0)i.

The stress tangential to the surface of an ellipse is

2

7,=2Re k§1 (8ty — M1 8i2)” Dy (zy) (A 9a)
and the stress normal to the surface is
2
Ty =2 Re k2=:1 (gny_:”’kgnz) (gnz+:”’kgny) ¢;c(zk)' (A 9[))
Stress boundary conditions for @, are

2 S
2Re X Dy (z,) = if £, jds (A 104q)

k=1 0

2 S
2Re X p DPplzg) = if £,-ids, (A 105)
k=1 0

25-2
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where the integral over surface s is taken to be counter-clockwise, and the upper and lower
signs are for outward and inward projecting normals, respectively.

For forces applied to the boundary we may evaluate @,(z,) as a power series solution in
the reciprocal complex variable:

Co = [z + (Zh—ak — 1} 6521/ (ax— iy b)) (A 11)

When no net force resultants occur due to body couples and no body forces are present then
a Fourier series expansion

8 n=m .
F , i, jds= nEm Yy elnd (A 12aq)
S n=1m .
+ Ofn'fds= -Em'yfl eln? (A 125)
ne—

is appropriate. The complex Fourier coefficients y¥, y% may be determined by integration on
[6: —m; n] by using the left hand side of (A 104, b). Here coefficients y,, with negative n are
assumed to be the complex conjugate of those with corresponding positive n. This treatment
of boundary conditions has been discussed at length by Novozhilov (1961).

The complex variable §, arises as a natural property of mapping of boundary conditions
(A 10a, b) onto the unit circle. For an ellipse the consecutive conformal mappings are

z = 3(ax+bx) L+3(ax—b4)/8, (A 13a)
(@ —ipg by) Gp+i(as +Hiug bi) /G (k= 1,2), (A 136)

(see Milne-Thomson (1968), p. 192, Lekhnitskii (1968), p. 33, or Lekhnitskii (1981), p. 162).
If we restrict x and y to the boundary of the ellipse then

{={ =eb (A 14)

We should note that Milne-Thomson assumes @ directed in a clockwise sense; hence, if we were
to follow his notation, we would include a minus sign with 10 in (A 14).

For an infinite plate with an elliptical hole the transformation of boundary conditions (A 10)
depend upon assumptions about the stress state at infinity. For finite tension at infinity, and
the plate everywhere else unloaded and no net force resultants, the solution of the form

e o]
Dy () = 21 A G (A 15)
n=
can be shown to satisfy the equation of equilibrium (A 3) and the boundary conditions

(A 104, b). Coefficients 4,,,, can be evaluated by using the boundary conditions in the form
(A 12a, b) with yZ, y¥ evaluated, and consequently

Bylz) = (~ DM T G0ty =70 =) (A 16)
because A28 = (24— @+ 13 13 H/ G, (A 17)
then dz/dLy Bylz) = (~0F B nGOD 0t~y V) /(=) (AL
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For tension of magnitude p at an angle ¢ from the x-axis as in figure 12, the background
stress components are

79 = p cos®¢p, TDE = psin?g, (A 19a)
and 798 = p sin ¢ cos ¢. (A 19b)
Only the first terms in (A 16) and (A 18) are non-zero, and

Y, = —1psing(a, sinp—1ib, cos ) (A 20a)
and vE, = 1pcosP(ay sing—ib, cos ). (A 206)

Substituting from (A 204) into (A 18) and using the result in (A 94) with the modification
for background stress such that

Tt = (Txx+72§) ggx ( +Tbg) gty+2(7xy+7xy) gtzgty (A 21)
results in

ro= 2sing/B 5 (= D + ) /[0 ()

+2/1% (128 (ay sin )2+ 738 (by cos 0)%—2a, by sin@ cos O8], (4 22)
where

) = — P ay sin6 (g ay sin@+b, cosO) - [cosO(a, cosp+a,,, aysind+pP,,, by cosd)
mod 2 mod 2

+sinf(ay By, sing—b, cosda,,, —b, cose cote)]

mod 2 mod 2
+3[(ay ay sin @+ b, cos 0)%— (B, a, sin 6)?]
X [sinf(ay cosp+a,,, a,sing+b,f,,, cose)

mod 2 mod 2

—cosO(ay By, sing—bya,,, cosdp—b, cos¢cot¢ (A 23a)

mod 2 mod 2
N = (ay sin@—a by, cosb) (o0, —a,) + B by cosO(B,—pB,), (A 23b)

7 = B ay sinO(a, ay sin@+b, cos) - [sinb(a, cosP+oy,, ay sing+by B, cosd)

mod 2 mod 2

—cosO(ay By, sing—byo,, cosd—b, cosg cotd]
mod 2 mod 2

+1[(ay ay sin @+ b, cos0)%2— (B, ay sin 6)?]
X [cosO(ay cosP+ay,, aysing+b, f,., cosd)
mod 2

mod2

+sinf(ay By, sing—b,a,,, cosd—b, cosd cotd)], (A 23¢)
mod 2 mod 2
and

N = (ay sin@—ay by cos6) (B, —B,) + By by cos O(a, —a,). (A 234)

Equation (A 22) is plotted in figure 12. Comparisons of (A 22) with solutions given by
Lekhnitskii (1968, figures 78, 80 and 81 therein) and Lekhnitskii (1981, figures 47-55 therein)
verified (A 22) and aided in establishing resolution requirements for the finite-element
solutions.
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LY

(@) x
Ficure A 1. Geometry of contact and vectorial representation for the analytical boundary-value problem solved
for an elliptical inclusion (see text of Appendix for discussion).

Solution for the rotational response of a rigid elliptical inclusion subjected to pure twisting moment M,

We now consider the planar plate discussed above when subjected to a twisting moment of
magnitude M, with a perfectly rigid inclusion welded into the elliptical cutout. The interface
between the elastic plate and rigid inclusion is assumed to be non-dislocational. If the plate
is considered to be of finite dimension and the moment M, is distributed along its vertical
edges, then an equivalent concentrated moment M occurring at the centre of the rigid inclusion
can be considered for the purpose of relating the total rigid rotational response ¢g and the
driving twist M,,. The relation will involve the compliances of the plate and all geometrical
factors (ay, b, and ¢°).

Consider the moment M about O due to the contact of material in region R with L on the
surface from A to B in figure A 1. The moment of L due to R is

d (o
=R —2z—|(=—]d A2
M CJAB z 4 (al:) $ (A 24)
(Milne-Thomson 1968, pp. 8 and 180). For a pure twist and a closed loop C along ds,
M = Re [F(z;)]c- (A 25)

In (A 25), and henceforth, the subscript £ implies sum, as written explicitly in equations (A 5).
The bracket [...] indicates the closed circuit C on all implied integration. Equation (A 25)
neglects terms involving @, explicitly because these can be shown to be zero over closed circuit
C for pure twist.

The displacement condition at the interface of L with R is that of small rigid rotation through
angle eg. In terms of the reciprocal complex transform variable, {, a convenient combination
of x and y components of boundary displacement, u,, and v, respectively, is

¥up = wy+ivy, = (iger) [(ax+bx) E+ (ax—b4) /L] (A 26)

Since the interface is non-dislocational we can use (A 5e, f) and (A 26) to write

2 Re (py Py) +12 Re (¢, Py) = *p P+ * 4 Dy,
— (iben) [(an+by) 0+ (ag—by) /0, (A 27)


http://rsta.royalsocietypublishing.org/

A \
' B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANISOTROPIC INTERPLATE SHEAR 339
where o is the value of { evaluated at the interface (see A 14),

e = brptiqe,  *qx = prp—igy, (A 28)

and (77) indicates complex conjugate. Multiplying (A 27) by do/[27i (00— *{)] (with *{
indicating either ¢, or §,) yields

P Pr(zi) = 21 eg(ax—by)/*C. (A 294)
Performing the same multiplication and integration on the complex conjugate of (A 27) yields
*i Pi(2x) = —2Zieg (ax +b4) /*E, (A 290)

*{ lying outside the loop so that Cauchy’s integral formula applies (see Milne-Thomson 1968,
p. 56). This last step embodies the essential difference between the treatment of boundary
conditions by Lekhnitskii (1968, 1981) and that used by Milne-Thomson (1968). The latter
author essentially uses the Hilbert transform while the former uses a Fourier expansion and
direct integration.

Finally, to construct the moment M (see A 25) we must (i) solve for @, in terms of *¢ from
(A 29a,b), and (ii) use the differential relation (A 17) and perform the integrals
[ ®,(dz,/d¢,) dE, and [ B,(dz,/dS,) dE,. Consequently, (A 25) is

M=¢exm Re{(ay—ipgby) [*pr(as+by) +*q(an—04)1/ [*pps1 *a— *pp *qesr 1H (A 30)
mod 2 mod 2
which then defines Y in (9) and represents the analytical results plotted in figures 17 and 18.
For the case ¢® = 0°,

Y = [ayp(a15+ay, 81 By) (Ba—By) + a1y ags (B3 By — B3/ By)
+ay,a15(1/8,—1/B5)1/[(a% a1, (BT — B3) + ax by (B — ) (ay1 By Byt 2ay,)
—ay by ag(1/B,—1/8,) +b% ag9(B1/ Ba—Bs/B1)], (A 31)

which reduces the form given in (12) when a,, * a,, and £, > £,.

Solution for pure shear applied at infinity in a non-orthotropic plate with an elliptical non-orthotropic
' inclusion

We now consider the case when the inclusion discussed above is a non-orthotropic material
with compliances aj,, ayy, a,, agq, ajg and aze. The elliptical inclusion may therefore represent
the effective multiple fault anisotropy considered in §8 where parallel two-dimensional faults
are arbitrarily oriented with respect to both the coordinate frame, and the ellipse axes and/or
the surrounding faulted media. Again, the plate is of infinite extent. The plate is subjected to
a uniform background stress field of magnitudes 75¢ and 758. The outline to obtain the solution
for the stress field near the elastic inclusion follows the development of Lekhnitskii (1954).

’

We consider the case when stresses, 7,,, 7, and 7, interior to the elliptical inclusion are
spatially homogeneous. Finite-element solutions demonstrate this approximation to be an
adequate assumption ab #nitio. The values of these spatially homogeneous stresses denoted by
Tru Tyy and Ty, are not, however, given a priori. Their values are to be determined together
with the rigid rotational response of the inclusion, ey, as a part of the solution to the

boundary-value problem.
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The x and y components of displacements within the inclusion may be written in terms of
the stresses by simple integration of the constitutive relation resulting in

’ _ r r r o
W = (ay, Tpr+ag, Tyy a6 'rxy) X—e€ry (A 32a)

/o /’ /7 ’ ’ /7 ’ ’ /7 ’ ’ /7 ’
and V= (alg Tyy+ Gog Tyy + s Toy) X+ (635 Thp + a5, Tyy+ G2 Try) Y+ €x X. (A 325)

Similarly, the x and y displacements in the surrounding material due to the background

stresses are o b b
u® = (a,, 728 +a,, Tyg) x (A 32¢)

0 — b b b b
and V0 = (a4 725+ ay6 Ty§) x4 (a, 725 +ag, Tyi) Y-

The traction normal to the surface of contact may be divided into ¥ and y components, X,
and Y, respectively. We shall assume that the boundary between the two materials is
non-dislocational. Continuity of stress along the interface (see figure A 1) demands that

X, =—X, (A 33q)
and Y,=-7Y, (A 335)

where the primed and unprimed components represent inclusion and surroundings respectively.
Continuity of displacement demands that

u=u, (A 33¢)
and v="1". (A 334d)

When 72¢ = 0, integration of the traction conditions (A 33a, b) about a closed circuit C
yields;

2
2 Re kE Dy(z) = (75 —THE) x—Thy ¥, (A 34a)
-1
2
2Re kzl tr Pr(zi) = (Toz—T25) Y= Toy %, (A 34b)

respectively (see (A 10a, b)). The displacement conditions (A 33a, b) are transformed to the
complex variable z;, by a similar integration procedure and yields

2
2Re X p, Pr(zs) = ' —u°, (A 34¢)
k=1

2
2Re 2 ¢, Pp(zg) =0 —2°, (A 344d)
k=1

whereonther.h.s.of (A 34¢, d) weuse theexplicitformsofw’, u°, v’, v®asin expressions (A 32a—d).
The complex integrations may be reconstructed in detail by referring to chapter 7 of the
monograph by Milne-Thomson (1968).

We now seek an expression for @,,(z;,) to be evaluated at {;, = €!’. For a plate with an elliptical
hole we know that the solution for the homogeneous problem for @,(z,) is of the form

D,.(z;) = 0,/ &, (A 35)

(see (A 15)). This homogeneous form must satisfy the traction conditions at the boundary of
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contact between the elliptical inclusion and the surrounding medium. Using (A 34a, b), then,
we can write

2
2 3 o= (1,—78)a

vy) Qs — T4y by (A 36a)
k=1

2
and 2 3 o, = 1(Tp,—T58) by —70, ay. (A 360)
k=1
We must solve for both real and imaginary parts of w, so similar equations hold for the complex
conjugates of (A 36).
The two solutions for £ = 1, 2 may be written as

2(py— o) 0 = (— 1)F (15, = 708) ibs — (Tyy —T08) @u s + 75y (bt —ax)]. (4 37)

mod 2 mod 2

/

vy Tzy and the rigid
rotation of the inclusion eg. Incorporating the two solutions represented by (A 35) together

To complete the solution we need only solve for the unknowns 77, 7,

with (A 37) into (A 34a-d) we reduce the remaining work to solving a set of four complex
algebraic equations for the real constants 75, 7, 7;, and eg.

x> Tyys
Stress components may be recovered by noting that
D (zg) = — e/ 8k 1) (A 38)
with st = (eh =kt B3

The final step for the analytical solution is then to solve
MSint = §ext (A 39)

where St are interior unknown constants and S¢*t is formed solely from background stresses
and material properties of the surrounding medium. The boundary condition matrix operator
M is written explicitly as

it?l{’/c—ail 3,?"—(112 — (02 + i0P1/c+ a36) —i/ec
M= %(8/2_“12/)/6_4;6 3/2/‘—ia,;2/c—a;6 (3/§+18‘1/‘/c+466+1a26/c) 1 (A 404)
—i0%/c—aj, 0Pt —al, — (o7 —18/{’/‘/c+a16) i/¢
—i(f?,‘f—aiz)/c—aie 3Z”+ia;2/c_a;6 — (o2 —i3§/‘/c+a;6—ia;6/c) 1
and the four-vectors ™ and S$€*t as
Tox
Tyy (A 405)
Sint =t 77,
€r
and
T;’,i(iaft’/c —ay,)+ 755(8/{’/‘ —a,5)
e (i(?/‘{/c— 1a,,/c—a,6) + 7% (%q —iyy/c— ayg) (A 40¢)

Sext = 78(—i00/c—ay,) + 75 (00" —ay,) )

To8(— i3/‘{/c +ia,/c—aye) + "bg (8’“1 +iag,/c— ay)

26 Vol. 318. A
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introducing the complex constants

and

00 = (pr—12)/ (1—1s),
00 = (91— 92)/ (01— 3)
Ol = (py Ga— P2 1)/ (01— o)

3,{”“ = (Uapa— 1)/ (y—1s),

which depend upon the elastic properties of the surrounding medium and the real constant

¢ = ay/by. When 708 = —75% the background stress corresponds to that of pure shear.
NoraTIiON

symbol description units
cirs fourth-rank tensor of stiffness coefficients MPa (1MPa = 10 N m™2)
Alirs fourth-rank tensor of compliance coefficients MPa™!
Cpq the pq stiffness MPa
apg the p¢g compliance MPa™!
0%,/0x;  rotation matrix —
é?q the pg compliance with respect to a rotated frame  MPa
2 strain tensor e
Tii stress tensor MPa
Tpg stress component p, ¢ = 1, 2, 3 (or p, ¢ = x, y for

elliptical inclusion exterior of §8 and Appendix A) —
€pg strain component p, ¢ = 1, 2, 3 (or p, ¢ = x, y for

elliptical inclusion exterior of §8 and Appendix A) —
T8, the gth principal streﬁs MPa
€2y the ¢th principal stram. . —
Thq stress components of elliptical inclusion interior MPa
@pq the pg compliance of elliptical inclusion interior MPa™!
s background stress component applied at infinity MPa
uH? isotropic shear moduli for laminate components:

1,2 MPa
A2 isotropic first Lamé constants for laminate

components: 1, 2 MPa
Ka.? isotropic bulk compressiblities for laminate

components: 1, 2 MPa
d distance between similar sides of like components

in periodic laminate m
a laminate fraction occupied by weak component

(1) —
b laminate fraction occupied by strong component

(2) —
v Poisson’s ratio in any plane whose normal is a

transverse isotropy axis —
vy Poisson’s ratio normal to any plane whose normal

is a transverse isotropy axis
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G shear modulus in any plane whose normal is a
transverse isotropy axis MPa
G, shear modulus normal to any plane whose normal
is a transverse isotropy axis MPa
E Young’s modulus in any plane whose normal is a
transverse isotropy axis MPa
E, Young’s modulus normal to any plane whose
P normal is a transverse isotropy axis MPa
\ | Vo isotropic Poisson’s ratio for crustal bedrock —
_ E, isotropic Young’s modulus for crustal bedrock MPa
< S G, isotropic shear modulus for crustal bedrock MPa
é ~ e 90°—dip degrees
e E P° strike degrees
= O ¢ strike of faults within elliptical inclusion degrees
LT O €R magnitude of clockwise rigid rotational motion radians
e M,, magnitude of concentrated clockwise rotational
3‘2 twisting moment N
Eg ay half-length of major axis of elliptical inclusion m
82 o by half-length of minor axis of elliptical inclusion m
8%) Ey, Young’s modulus at maximum weakening direction
Eg for crack anisotropy MPa
& Jy second deviatoric stress invariant MPa
I, second deviatoric strain invariant —
4 cubical dilatation —
L Biot’s slide modulus (or ratio of weakened to
isotropic shear moduli) —
Y| 1-L —
B! stress intensity coefficient for mode I crack
deformation —
Bl stress intensity coefficients for mode II crack
deformation —
4 o half length of an unlocked fault segment m
< : g distance between adjacent collinear fault segments m
= ) distance between collinear fault segment centres m
;5 P A4 total areal extent of reference crust (crack model)  m?
O H Aqy areal density of cracks m™2
=~ E H, total collinear length scale of reference crust (crack
= O model) m
E 9) H total orthogonal length scale of reference crust
(crack model) m
N, number of collinear cracks in reference crust (crack
model) —
N number of parallel collinear crack sets in reference

crust (crack model) o

PHILOSOPHICAL
TRANSACTIONS
OF

26-2


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

A

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

344 E. R. IVINS AND G. A. LYZENGA

REFERENCES

Agnew, D. C. & Sieh, K. E. 1978 A documentary study of the felt effects of the great California earthquake, of
1857. Bull. seism. Soc. Am. 68, 1711-1725.

Aki, K. 1979 Characteristics of barriers on an earthquake fault. J. geophys. Res. 84, 6140-6148.

Aki, K. 1982 Three-dimensional seismic inhomogeneities in the lithosphere and asthenosphere: Evidence for
decoupling in the lithosphere and flow in the asthenosphere. Rev. Geophys. Space Phys. 20, 161-170.

Allen, C. R., St Amand, P., Richter, C. F. & Nordquist, J. M. 1965 Relationship between seismicity and geologic
structure in the southern California region. Bul. seism. Soc. Am. 55, 753-7917.

Allison, M. L., Whitcomb, J. A., Cheatum, C. E. & McEuen, R. B. 1978 Elsinore fault seismicity: The September
13, 1983, Agua Calente Springs, California, earthquake series. Bul. setsm. Soc. Am. 68, 429-440.

Backus, G. E. 1962 Long-wave elastic anisotropy produced by horizontal layering. J. geophys. Res. 67, 4427-4440,

Baird, A. K., Morton, O. M., Woodford, A. O. & Baird, K. W. 1974 Transverse Ranges province: A unique
structural-petrochemical belt across the San Andreas fault system. Bull. geol. Soc. Am. 85, 163-174.

Baird, A. K. & Miesch, A. T. 1984 Chemical variation in source materials for the batholithic rocks of southern
California. U.S.G.S. prof. Pap. no. 1284, pp. 1-42.

Barenblatt, E. I., Keilis-Borok, V. I. & Vishik, M. M. 1981 Model of clustering of earthquakes. Proc. natn. Acad.
Sci. U.S.A. 78, 5284-5287.

Bilby, B. A. & Eshelby, J. D. 1968 Dislocations and theory of fracture. In Fracture: an advanced treatise (ed.
H. Liebowitz), vol. 1, pp. 99-182. New York: Academic Press.

Biot, M. A. 1965 Mechanics of incremental deformations. (504 pages.) New York: Wiley.

Bird, P. & Baumgardner, J. 1984 Fault friction, regional stress, and crust-mantle coupling in southern California
from finite element models. J. geophys. Res. 89, 1932-1944.

Bird, P. & Piper, K. 1980 Plane-stress finite element models of tectonic flow in southern California. Phys. Earth
planet. Inter. 21, 158-175.

Bird, P. & Rosenstock, R. W. 1984 Kinematics of present crust and mantle flow in southern California. Bull. geol.
Soc. Am. 95, 946-957.

Briggs, P., Press, F. & Guberman, Sh. A. 1977 Pattern recognition applied to earthquake epicenters in California
and Nevada. Bull. geol. Soc. Am. 88, 161-173.

Bruggeman, D. A. G. 1937 Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.
IT1. Die elastischen Konstanten der quasiisotropen Mirschkdrper aus isotropen Substanzen. Annln Phys. 29,
160-178.

Budiansky, B. & O’Connell, R. J. 1976 Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81-97.

Burk, C. A. & Moores, E. M. 1968 Problems of major faulting at continental margins with special reference to
the San Andreas fault system. In Conference on Geologic Problems of the San Andreas Fault System (Stanford Univ. Publ.
geol. Sci. no. 11), pp. 358-374.

Byerlee, J. D. 1978 Friction of rocks. Pure appl. Geophys. 116, 615-626.

Chinnery, M. A. 1963 The stress changes that accompany strike-slip faulting. Bull. seism. Soc. Am. 53, 921-932.

Chinnery, M. A. 1964 The strength of the Earth’s crust under horizontal shear stress. J. geophys. Res. 69, 2085-2089.

Chinnery, M. A. 1966 Secondary faulting: I. Theoretical aspects. Can. J. Earth Sci., 3, 163-174.

Christensen, M. N. 1966 Late Cenozoic crustal movement in the Sierra Nevada of California. Bull. geol. Soc. Am.
77, 163-183.

Christie, J. M. & Ord, A. 1980 Flow stress from microstructures of mylonites: Example and current assessment.
J. geophys. Res. 85, 6253—-6262.

Corbett, E. J. & Johnson, C. E. 1982 The Santa Barbara, California earthquake of 13 August 1978. Bull. seism.
Soc. Am. 72, 2201-2226.

Crouch, J. K. 1979 Neogene tectonic evolution of the western Transverse Ranges and the California continental
borderland. Bull. geol. Soc. Am. 90, 338-349.

Crowell, J. C. 1952 Lateral displacement on the San Gabriel fault, southern California. Bull. geol. Soc. Am. 63,
1241-1242.

Crowell, J. C. 1976 Implications of crustal stretching and shortening of coastal Ventura Basin. Pacific Section, Am.
Assoc. Petrol. Geol. Misc. Publ. no. 24, pp. 365-382.

Crowell, J. C. 1981 An outline of the tectonic history of southeastern California. In The geotectonic development of
California (ed. W. G. Ernst), pp. 582-600. Englewood Cliffs, N.]J.: Prentice-Hall.

Cummings, D. 1976 Theory of plasticity applied to faulting, Mojave Desert, southern California. Bull. geol. Soc.
Am. 87, 720-724.

Davis, G. A. 1980 Problems of intraplate extensional tectonics, western United States. In Continental tectonics, pp.
84-95. Washington, D.C.: National Academy of Sciences.

Delameter, W. R., Herrmann, G. & Barnett, D. M. 1975 Weakening of an elastic solid by rectangular array of
cracks. J. appl. Mech. 47, 74-80.

Dibblee, T. W. 1976 The Rinconada and related faults in the Southern Coast Ranges, California, and their tectonic
significance. U.S. geol. Surv. prof. Paper. no. 981, pp. 1-55.


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

A

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANISOTROPIC INTERPLATE SHEAR 345

Dickinson, W. R. 1981 Plate tectonics and the continental margin of California. In The geotectonic development of
California (ed. W. G. Ernst), pp. 1-28. Englewood Cliffs, N.J.: Prentice-Hall.

Dokka, R. K. 1983 Displacement on late Cenozoic strike-slip faults of the central Mojave Desert, California. Geology
11, 305-308.

Ebel, J. E. & Helmberger, D. V. 1982 P-wave complexity and fault asperities: The Borrego Mountain, California,
earthquake of 1968. Bull. seism. Soc. Am. 72, 413-437.

England, P. & McKenzie, D. P. 1982 A thin viscous sheet model for continental deformation. Geophys. JI. R. astr.
Soc. 70, 295-321.

Ergas, R. A. & Jackson, D. D. 1981 Spatial variation of crustal seismic velocities in southern California. Bull. seism.
Soc. Am. 71, 1849-1861.

Eubanks, R. A. & Sternberg, E. 1954 On the axisymmetric problem of elasticity theory for a medium with
transverse isotropy. J. rat. Mech. Analysis. 3, 89-101. ’

Fleitout, L. & Froidevaux, C. 1982 Tectonics and topography for a lithosphere containing density heterogeneities.
Tectonics, 1, 21-56.

Freudenthal, A. M. & Geiringer, H. 1958 The mathematical theories of the anelastic continuum. In Handbuch der
Physik (ed. S. Flugge), vol. 6, pp. 229-433. Berlin: Springer-Verlag.

Froidevaux, C., Schubert, G. & Yuen, D. A. 1977 Thermal and mechanical structure of the upper mantle: A
comparison between continental and oceanic models. Tectonophysics 37, 233-246.

Garfunkel, Z. 1974 Model for the late Cenozoic tectonic history of the Mojave Desert, California, and for its relation
to adjacent regions. Bull. geol. Soc. Am. 85, 1931-1944.

Gawthrop, W. 1978 The 1927 Lompoc, California earthquake. Bull. seism. Soc. Am. 68, 1705-1716.

Graham, S. A. & Dickinson, W. R. 1978 Evidence for 115 kilometers of right slip on the San Gregorio—Hosgri
fault trend. Science, Wash. 199, 179-181.

Green, A. E. & Taylor, G. I. 1939 Stress systems in aeolotropic plates. I. Proc. R. Soc. Lond. A 173, 162-172.

Gurtin, M. E. 1972 The linear theory of elasticity. In Handbuch der Physik (ed. C. Truesdell) vol. 6 (Mechanics of
Solids II), pp. 1-295. Berlin: Springer-Verlag.

Hadley, D. & Kanamori, H. 1977 Seismic structure of the Transverse Ranges, California. Bull. geol. Soc. Am. 88,
1469-1478.

Hall, C. A. 19814 San Luis Obispo transform fault and middle Miocene rotation of the western Transverse Ranges,
California. J. geophys. Res. 86, 1015-1031.

Hall, C. A. 19815 Evolution of the western Transverse Ranges microplate: Late Cenozoic faulting and basinal
development. In The geotectonic development of California (ed. W. G. Ernst), pp. 559-582. Englewood Cliffs, N.J.:
Prentice-Hall.

Hamilton, W. 1978 Mesozoic tectonics of the Western U.S. In Mesozoic Paleogeography of the Western United States
(Pacific Coast Paleogeography Symposium no. 2) (ed. D. G. Howell & K. A. McDougal), pp. 30-70. Los Angeles:
Society of Economic Paleontologists and Minerologists.

Hartzell, S. & Brune, J. N. 1979 The Horse Canyon earthquake of August 2, 1975 — two stage stress-release process
in a strike-slip earthquake. Bull. seism. Soc. Am. 69, 1161-1173.

Helbig, K. 1958 Elastische Wellen in anisotropen Medien. Beitr. Geophys. 67, 256-288.

Hill, D. P. 1982 Contemporary block tectonics: California and Nevada. J. geophys. Res. 87, 5433-5450.

Humphreys, E., Clayton, R. W. & Hager, B. H. 1984 A tomographic image of mantle structure beneath southern
California. Geophys. Res. Lett. 11, 625-627.

Kamerling, M. J. & Luyendyk, B. P. 1979 Tectonic rotations of the Santa Monica Mountains region, Western
Transverse Ranges, California, suggested by paleomagnetic vector. Bull. geol. Soc. Am. 90, 331-337.

Kasahara, A. 1981 Earthquake mechanics. (293 pages.) Cambridge University Press.

Koide, H. & Bhattacharji, S. 1977 Geometric patterns of active faults and their significance as indicators for areas
of energy release. In Energetics of geological processes (ed. S. K. Saxena), pp. 46-66. New York: Springer-Verlag.

Lachenbruch, A. H. & Sass, J. H. 1980 Heat flow and energetics of the San Andreas Fault zone. J. geophys. Res.
85, 6185-6222. ]

Langston, C. A. 1978 The February 9, 1971 San Fernando Earthquake: A study of source finiteness in teleseismic
body waves. Bull. seism. Soc. Am. 68, 1-29.

Lekhnitskii, S. G. 1954 Stress distribution in an anisotropic plate with an elliptic elastic core (plane problem).
[In Russian]. Inzh. Sb. 19, 83-106.

Lekhnitskii, S. G. 1968 Anisotropic plates (translated from the 2nd Russian edition by S. W. Tsai & T. Cheron).
(534 pages.) New York: Gordon & Breach.

Lekhnitskii, S. G. 1981 Theory of elasticity of an anisotropic body (430 pages.) Moscow: Mir Publishers.

Louie, J. N., Allen, C. R., Johnson, D. C., Haase, P. C. & Cohn, S. N. 1985 Fault slip in southern California.
Bull. seism. Soc. Am. 75, 811-833.

Luyendyk, B. P., Kamerling, M: J. & Terres, R. 1980 Geometrical model for Neogene crustal rotations in
southern California. Bull. geol. Soc. Am. 91, 211-217.

Lyzenga, G. A., Wallace, K. S., Raefsky, A., Groth, P. M. & Fanselow, J. L. 1986 Tectonic motions in California
inferred from VLBI observations, 1980-1984. J. geophys. Res. (In the press.)


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY [\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

346 E. R.IVINS AND G. A. LYZENGA

McGarr, A. 1980 Some constraints on levels of shear stress in the crust from observations and theory. J. geophys.
Res. 85, 6231-6238.

McGarr, A. 1982 Analysis of states of stress between provinces of constant stress J. geophys. Res. 87, 9279-9288.

Mavko, G. M. 1981 Mechanics of motion on major faults. 4. Rev. Earth. planet. Sci. 9, 81-111.

Melosh, H.J. & Raefsky, A. 1981 A simple and efficient method for introducing faults into finite element
computation. Bull. seism. Soc. Am. 71, 1391-1400.

Milne-Thomson, L. M. 1968 Plane elastic systems. (211 pages.) Berlin: Springer-Verlag.

Minster, J. B. & Jordan, T. H. 1978 Present-day plate motions. J. geophys. Res. 83, 5331-5354.

Morrow, C. A., Shi, L. Q. & Byerlee, J. D. 1982 Strain hardening and strength of clay-rich fault gouges. J. geophys.
Res. 87, 6771-6780.

Musman, A. 1982 Statistical tests of ARIES data. J. geophys. Res. 87, 5553-5562.

Norris, R. M. & Webb, R. W. 1977 Geology of California. (365 pages.) New York: Wiley.

Novozhilov, V. V. 1961 Theory of elasticity (translated from the Russian by J. K. Lusher) (448 pages.) New York:
Pergamon.

Oliver, H. W. 1980 Interpretation of the gravity map of California and its continental margin. Calif. Div. Mines
and Geol. Bull. no. 205, pp. 1-52. Sacramento, California.

Page, B. M. 1981 The Southern Coast Ranges. In The geotectonic development of California (ed. W. G. Ernst), pp.
329-417. Englewood Ciffs, N.J.: Prentice-Hall.

Pechmann, J. C. 1983 The relationship of small earthquakes to strain accumulation along major faults in southern
California. Ph.D. thesis, California Institute of Technology, Pasadena, California.

Plescia, J. B. & Henyey, T. L. 1982 Geophysical character of the proposed eastern extension of the Garlock fault
and adjacent areas, eastern California. Geology 10, 209-214.

Puente, I. & de la Pefia, A. 1979 Geology of the Cerro Prieto geothermal field. Geothermics 8, 155-175.

Raikes, S. A. 1980 Regional variations in upper mantle structure beneath southern California. Geophys. Ji. R. astr.
Soc. 63, 187-216.

Raleigh, C. B., Sieh, K. E., Sykes, L. R. & Anderson, D. L. 1982 Forecasting southern California earthquakes.
Science, Wash. 217, 1097-1104.

Rice, J. R. 1980 The mechanics of earthquake rupture. In Proceedings of the International School of Physics, Enrico Fermi,
Course no. LXX VIII (ed. A. M. Dziewonski & E. Boschi), pp. 555-649. Amsterdam: North-Holland.

Rice, J. R., Rudnicki, J. W. & Simons, D. A. 1978 Deformation of spherical cavities and inclusion in fluid-infiltrated
elastic materials. Int. J. Solids Struct. 14, 289-303.

Richardson, R., Solomon, S. C. & Sleep, N. H. 1979 Tectonic stress in the plates. Rev. Geophys. Space Phys. 17,
981-1019.

Rodgers, D. A. & Chinnery, M. A. 1973 Stress accumulation in the Transverse Ranges, southern California. In
Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System, held at Stanford, California (Stanford
Univ. Publ. geol. Sci. 13), pp. 70-79.

Rose, M. E. 1957 Elementary theory of angular momentum. (222 pages.) New York: Wiley.

Rudnicki, J. W. & Kanamori, H. 1981 Effects of faultinteraction on moment, stress drop, and strain energy release.
J. geophys. Res. 86, 1785-1793.

Rundle, J. B. & Thatcher, W. 1980 Speculations on the nature of the southern California uplift. Bull. seism. Soc.
Am. 70, 1869-1886.

Sanders, C. O. & Kanamori, H. 1984 A seismotectonic analysis on the Anza seismic gap, San Jacinto fault zone,
southern California. J. geophys. Res. 89, 5873-5890.

Savage, J. C. 1978 Strain patterns and strain accumulation along plate margins. In Applications of geodesy to
geodynamics (Proc. 9th Geodesy/Solid Earth and Ocean Physics Research Conference, 2-5 Oct. 1978), pp. 93-97. Ohio
State University.

Sbar, M. L. 1982 Delineation and interpretation of seismotectonic domains in western North America. J. geophys.
Res. 87, 3919-3928.

Scheidegger, A. E. 1956 Forces in the Earth’s crust. In Handbuch der Physik (ed. S. Flugge), vol. 47 (Geophysics I),
pp- 2568-287. Berlin: Springer-Verlag.

Scholz, C. H. 1977 Transform fault systems of California and New Zealand: similarities and their tectonic and
seismic styles. J. geol. Soc. Lond. 133, 215-299.

Seeber, L. 1983 Large scale thin-skin tectonics. Rev. Geophys. Space Phys. 21, 1528-1538.

Sharp, R. V. 1981 Variable rates of late Quaternary strike slip on the San Jacinto fault zone, southern California.
J. geophys. Res. 86, 1754-1762.

Simpson, R. W. & Cox, A. 1977 Rotations in the Coast Ranges. Geology 5, 585-589.

Singh, B. 1973 Continuum characterization of jointed rock masses, Part I. The constitutive equations. Int. J. Rock
Mech. Min. Sei. 10, 311-335.

Stauffer, P. H. 1967 Grain flow deposits and their implications, Santa Ynez Mountains, California. J. sedim. Petrol.
37, 487-508.

Sylvester, A. G., Smith, S. W. & Scholz, C. H. 1970 Earthquake swarm in the Santa Barbara Channel, California,
1968. Bull. seism. Soc. Am. 60, 1047—-1060.


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANISOTROPIC INTERPLATE SHEAR 347

Sylvester, A. G. & Smith, R. R. 1976 Tectonic transpression and basement-controlled deformation in San Andreas
fault zone, Salton Trough, California. Bull. Am. Ass. Peirol. Geol. 60, 2012-2018.

Sylvester, A. G. & Darrow, A. C. 1979 Structure and neotectonics of the Western Santa Ynez fault system in
southern California. Tectonophysics 52, 389-405.

Tchalenko, J. S. 1970 Similarities between shear zones of different magnitudes. Bull. geol. Soc. Am. 81, 1625-1640.

Tsuboi, C. 1956 Earthquake energy, earthquake volume aftershock area, and strength of the Earth’s crust. J. Phys.
Earth 4, 63-66.

Turcotte, D. L. & Schubert, G. 1982 Geodynamics: applications of continuum physics to geological problems. (608 pages.)
New York: Wiley.

Veeder, J. G. & Brown, R. D. 1968 Structure and stratigraphic relations along the Nacimento fault in the southern
Santa Lucia Range and San Rafael Mountains, California. In Conference on Geological Problems of the San Andreas
Fault System (Stanford University Publ. geol. Sci. no. 11), pp. 242-259.

Walck, M. C. & Minister, J. B. 1982 Relative array analysis of upper mantle lateral velocity variations in southern
California. J. geophys. Res. 87, 1757-1772.

Wallace, T. C., Helmberger, D. V. & Ebel, J. E. 1981 A broadband study of the 13 August 1978 Santa Barbara
earthquake. Bull seism. Soc. Am. 70, 1869-1886.

Walpole, L.J. 1981 Elastic behaviour of composite materials: Theoretical foundations. Adv. appl. Mech. 21,
169-242.

Walsh, J. B. & Grosenbaugh, M. A. 1979 A new model for analyzing the effect of fractures on compressiblity.
J. geophys. Res. 84, 3532-3536.

Whitcomb, J. H., Allen, C. R., Garmany, J. D. & Hileman, J. A. 1973 San Fernando earthquake series, 1971:
Focal mechanisms and tectonics. Rev. Geophys. Space Phys. 11, 693-730.

Wilcox, R. E., Harding, T. P. & Seely, D. R. 1973 Basic wrench tectonics. Bull. Am. Ass. Petrol. Geol. 57, 74-96.

Yeats, R. S. 1981 Quaternary flake tectonics of the California Transverse Ranges. Geology 9, 16-20.

Yeats, R. S. 1983 Large-scale Quaternary detachments in Ventura Basin, southern California. J. geophys. Res. 88,
569-583.

Yeats, R. S., Cole, M. R., Mershat, W. R. & Parsley, R. M. 1974 Poway fan submarine cone and rifting of the
inner southern California borderland. Bull. geol. Soc. Am. 85, 293-302.

Yerkes, R. F. & Lee, W. H. K. 1979 Late Quaternary deformation in the western Transverse Ranges, California.
U.S. geol. Surv. Circ. no. 799-B, pp. 1-11.

Yerkes, R. F., Greene, H. G., Tinsley, J. C. & Lajoie, K. R. 1981 Seismotectonic setting of the Santa Barbara
Channel area, southern California. Text accompanying U.S. geol Surv. map no. MF-1169. (25 pages.)
Department of Interior, U.S. Geological Survey.

Zoback, M. L. & Zoback, M. 1980a Faulting patterns in north-central Nevada and strength of the crust. J. geophys.
Res. 85, 275-284.

Zoback, M. L. & Zoback, M. 198046 State ofstress in the conterminous United States. J. geophys. Res. 85, 6113-6156.


http://rsta.royalsocietypublishing.org/

A{”, ‘u’{”j p“}

(2) (2
A% u ;i p{z}
(6)
|

< # : PP 24 y
E>'-_ PREIRa: { }
2: : ---_-___---__'-"E v
s | p:"p
O i
=w I
Iz Z

|

' Téi

|

| X X

! E

lane |

- isotropy — S X \
:ﬂ] E | . - y'& yﬂ
oz rotation 1 rotation 2
= : : . : o
29 FiGure 3. Three-dimensional, two-component laminate model: (@) coordinates of the laminate; () faulted (1) and
=w

unfaulted (2) phases; (c) interpretation of moduli E, E,,» and v, in terms of crustal fault orientation; (d)
counter-clockwise rotations from coordinates of transverse isotropy (x, y, z) to attitude of fault plane (y'—2z),
yielding the inverse of the rotation matrix given by Rose (1957) (see equation (4) in text). (£ and £, are the
Young moduli for tension or compression in the plane of isotropy and normal to the plane; respectively;

dip = 90° — 9/, strike = ¢¢.)
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